ﻻ يوجد ملخص باللغة العربية
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD, the linear assumption was considered oversimplified and the decoding accuracy remained lower for shorter decoding windows. Recently, nonlinear models based on deep neural networks (DNN) have been proposed to solve this problem. However, these models did not fully utilize both the spatial and temporal features of EEG, and the interpretability of DNN models was rarely investigated. In this paper, we proposed novel convolutional recurrent neural network (CRNN) based regression model and classification model, and compared them with both the linear model and the state-of-the-art DNN models. Results showed that, our proposed CRNN-based classification model outperformed others for shorter decoding windows (around 90% for 2 s and 5 s). Although worse than classification models, the decoding accuracy of the proposed CRNN-based regression model was about 5% greater than other regression models. The interpretability of DNN models was also investigated by visualizing layers weight.
Recent behavioral and electroencephalograph (EEG) studies have defined ways that auditory spatial attention can be allocated over large regions of space. As with most experimental studies, behavior EEG was averaged over 10s of minutes because identif
People suffering from hearing impairment often have difficulties participating in conversations in so-called `cocktail party scenarios with multiple people talking simultaneously. Although advanced algorithms exist to suppress background noise in the
Auditory attention decoding (AAD) algorithms decode the auditory attention from electroencephalography (EEG) signals that capture the listeners neural activity. Such AAD methods are believed to be an important ingredient towards so-called neuro-steer
In this work, we propose an overlapped speech detection system trained as a three-class classifier. Unlike conventional systems that perform binary classification as to whether or not a frame contains overlapped speech, the proposed approach classifi
A brain-computer interface (BCI) is used not only to control external devices for healthy people but also to rehabilitate motor functions for motor-disabled patients. Decoding movement intention is one of the most significant aspects for performing a