ﻻ يوجد ملخص باللغة العربية
Periodic quasars have been suggested as candidates for hosting binary supermassive black holes (SMBHs), although alternative scenarios remain possible to explain the optical light curve periodicity. To test the alternative hypothesis of precessing radio jet, we present deep 6 GHz radio imaging conducted with NSFs Karl G. Jansky Very Large Array (VLA) in its C configuration for the three candidate periodic quasars, DES J024703.24$-$010032.0, DES J024944.66$-$000036.8, and DES J025214.67$-$002813.7. Our targets were selected based on their optical variability using 20-yr long multi-color light curves from the Dark Energy Survey (DES) and the Sloan Digital Sky Survey (SDSS). The new VLA observations show that all three periodic quasars are radio-quiet with the radio loudness parameters measured to be $Requiv f_{6,{rm cm}}/f_{{rm 2500}}$ of $lesssim$1.0$-$1.5 and the $k$-corrected luminosities $ u L_ u$[6 GHz] of $lesssim$5$-$21 $times$ 10$^{39}$ erg s$^{-1}$. They are in stark contrast to previously known periodic quasars proposed as binary SMBH candidates such as the blazar OJ 287 and PG1302$-$102. Our results rule out optical emission contributed from precessing radio jets as the origin of the optical periodicity in the three DES$-$SDSS-selected candidate periodic quasars. Future continued optical monitoring and complementary multi-wavelength observations are still needed to further test the binary SMBH hypothesis as well as other competing scenarios to explain the optical periodicity.
We perform simulations of the capabilities of the next generation Very Large Array to image stellar radio photospheres. For very large (in angle) stars, such as red supergiants within a few hundred parsecs, good imaging fidelity results can be obtain
We present the discovery and subarcsecond localization of a new Fast Radio Burst with the Karl G. Jansky Very Large Array and realfast search system. The FRB was discovered on 2019 June 14 with a dispersion measure of 959 pc/cm3. This is the highest
A central compact object (CCO, e.g. a black hole) with an accretion disk has been suggested as the common central engine of various astrophysical phenomena, such as gamma-ray bursts (GRBs), tidal disruption events (TDEs) and active galactic nuclei (A
Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely locali