ﻻ يوجد ملخص باللغة العربية
We present the discovery and subarcsecond localization of a new Fast Radio Burst with the Karl G. Jansky Very Large Array and realfast search system. The FRB was discovered on 2019 June 14 with a dispersion measure of 959 pc/cm3. This is the highest DM of any localized FRB and its measured burst fluence of 0.6 Jy ms is less than nearly all other FRBs. The source is not detected to repeat in 15 hours of VLA observing and 153 hours of CHIME/FRB observing. We describe a suite of statistical and data quality tests we used to verify the significance of the event and its localization precision. Follow-up optical/infrared photometry with Keck and Gemini associate the FRB to a pair of galaxies with $rm{r}sim23$ mag. The false-alarm rate for radio transients of this significance that are associated with a host galaxy is roughly $3times10^{-4} rm{hr}^{-1}$. The two putative host galaxies have similar photometric redshifts of $z_{rm{phot}}sim0.6$, but different colors and stellar masses. Comparing the host distance to that implied by the dispersion measure suggests a modest (~ 50 pc/cm3) electron column density associated with the FRB environment or host galaxy/galaxies.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key obse
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely locali
Intense, millisecond-duration bursts of radio waves have been detected from beyond the Milky Way [1]. Their extragalactic origins are evidenced by their large dispersion measures, which are greater than expected for propagation through the Milky Way
Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes. Their physical origin remains unknown, but dozens of possible models have been postulated. Some FRB sources exhibit repeat bursts. Though over a hundred FRB sources have been di
We report on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$^{-3}$) discovered by CHIME/FRB Collaboration et al. (2019a). Using baseband voltage data saved for its repeat burst