ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the usage of machine learning for interpreting measured sensor values in sensor modules. In particular we analyze the potential of artificial neural networks (ANNs) on low-cost micro-controllers with a few kilobytes of memory to semantically enrich data captured by sensors. The focus is on classifying temporal data series with a high level of reliability. Design and implementation of ANNs are analyzed considering Feed Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs). We validate the developed ANNs in a case study of optical hand gesture recognition on an 8-bit micro-controller. The best reliability was found for an FFNN with two layers and 1493 parameters requiring an execution time of 36 ms. We propose a workflow to develop ANNs for embedded devices.
As one of the most important paradigms of recurrent neural networks, the echo state network (ESN) has been applied to a wide range of fields, from robotics to medicine, finance, and language processing. A key feature of the ESN paradigm is its reserv
Recognizing the patients emotions using deep learning techniques has attracted significant attention recently due to technological advancements. Automatically identifying the emotions can help build smart healthcare centers that can detect depression
Adding noises to artificial neural network(ANN) has been shown to be able to improve robustness in previous work. In this work, we propose a new technique to compute the pathwise stochastic gradient estimate with respect to the standard deviation of
As the complexity of deep neural networks (DNNs) trend to grow to absorb the increasing sizes of data, memory and energy consumption has been receiving more and more attentions for industrial applications, especially on mobile devices. This paper pre
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade