ﻻ يوجد ملخص باللغة العربية
The goal of image style transfer is to render an image with artistic features guided by a style reference while maintaining the original content. Due to the locality and spatial invariance in CNNs, it is difficult to extract and maintain the global information of input images. Therefore, traditional neural style transfer methods are usually biased and content leak can be observed by running several times of the style transfer process with the same reference style image. To address this critical issue, we take long-range dependencies of input images into account for unbiased style transfer by proposing a transformer-based approach, namely StyTr^2. In contrast with visual transformers for other vision tasks, our StyTr^2 contains two different transformer encoders to generate domain-specific sequences for content and style, respectively. Following the encoders, a multi-layer transformer decoder is adopted to stylize the content sequence according to the style sequence. In addition, we analyze the deficiency of existing positional encoding methods and propose the content-aware positional encoding (CAPE) which is scale-invariant and more suitable for image style transfer task. Qualitative and quantitative experiments demonstrate the effectiveness of the proposed StyTr^2 compared to state-of-the-art CNN-based and flow-based approaches.
Extensive research in neural style transfer methods has shown that the correlation between features extracted by a pre-trained VGG network has a remarkable ability to capture the visual style of an image. Surprisingly, however, this stylization quali
In this paper, we propose an image quality transformer (IQT) that successfully applies a transformer architecture to a perceptual full-reference image quality assessment (IQA) task. Perceptual representation becomes more important in image quality as
Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the ran
Neural style transfer is an emerging technique which is able to endow daily-life images with attractive artistic styles. Previous work has succeeded in applying convolutional neural networks (CNNs) to style transfer for monocular images or videos. Ho
Despite having promising results, style transfer, which requires preparing style images in advance, may result in lack of creativity and accessibility. Following human instruction, on the other hand, is the most natural way to perform artistic style