ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking and Improving the Robustness of Image Style Transfer

206   0   0.0 ( 0 )
 نشر من قبل Pei Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive research in neural style transfer methods has shown that the correlation between features extracted by a pre-trained VGG network has a remarkable ability to capture the visual style of an image. Surprisingly, however, this stylization quality is not robust and often degrades significantly when applied to features from more advanced and lightweight networks, such as those in the ResNet family. By performing extensive experiments with different network architectures, we find that residual connections, which represent the main architectural difference between VGG and ResNet, produce feature maps of small entropy, which are not suitable for style transfer. To improve the robustness of the ResNet architecture, we then propose a simple yet effective solution based on a softmax transformation of the feature activations that enhances their entropy. Experimental results demonstrate that this small magic can greatly improve the quality of stylization results, even for networks with random weights. This suggests that the architecture used for feature extraction is more important than the use of learned weights for the task of style transfer.



قيم البحث

اقرأ أيضاً

The goal of image style transfer is to render an image with artistic features guided by a style reference while maintaining the original content. Due to the locality and spatial invariance in CNNs, it is difficult to extract and maintain the global i nformation of input images. Therefore, traditional neural style transfer methods are usually biased and content leak can be observed by running several times of the style transfer process with the same reference style image. To address this critical issue, we take long-range dependencies of input images into account for unbiased style transfer by proposing a transformer-based approach, namely StyTr^2. In contrast with visual transformers for other vision tasks, our StyTr^2 contains two different transformer encoders to generate domain-specific sequences for content and style, respectively. Following the encoders, a multi-layer transformer decoder is adopted to stylize the content sequence according to the style sequence. In addition, we analyze the deficiency of existing positional encoding methods and propose the content-aware positional encoding (CAPE) which is scale-invariant and more suitable for image style transfer task. Qualitative and quantitative experiments demonstrate the effectiveness of the proposed StyTr^2 compared to state-of-the-art CNN-based and flow-based approaches.
Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the ran ge of arbitrary style defined by existing works is bounded in the particular domain due to their structural limitation. Specifically, the degrees of content preservation and stylization are established according to a predefined target domain. As a result, both photo-realistic and artistic models have difficulty in performing the desired style transfer for the other domain. To overcome this limitation, we propose a unified architecture, Domain-aware Style Transfer Networks (DSTN) that transfer not only the style but also the property of domain (i.e., domainness) from a given reference image. To this end, we design a novel domainness indicator that captures the domainness value from the texture and structural features of reference images. Moreover, we introduce a unified framework with domain-aware skip connection to adaptively transfer the stroke and palette to the input contents guided by the domainness indicator. Our extensive experiments validate that our model produces better qualitative results and outperforms previous methods in terms of proxy metrics on both artistic and photo-realistic stylizations.
Neural Style Transfer (NST) has quickly evolved from single-style to infinite-style models, also known as Arbitrary Style Transfer (AST). Although appealing results have been widely reported in literature, our empirical studies on four well-known AST approaches (GoogleMagenta, AdaIN, LinearTransfer, and SANet) show that more than 50% of the time, AST stylized images are not acceptable to human users, typically due to under- or over-stylization. We systematically study the cause of this imbalanced style transferability (IST) and propose a simple yet effective solution to mitigate this issue. Our studies show that the IST issue is related to the conventional AST style loss, and reveal that the root cause is the equal weightage of training samples irrespective of the properties of their corresponding style images, which biases the model towards certain styles. Through investigation of the theoretical bounds of the AST style loss, we propose a new loss that largely overcomes IST. Theoretical analysis and experimental results validate the effectiveness of our loss, with over 80% relative improvement in style deception rate and 98% relatively higher preference in human evaluation.
Neural style transfer is an emerging technique which is able to endow daily-life images with attractive artistic styles. Previous work has succeeded in applying convolutional neural networks (CNNs) to style transfer for monocular images or videos. Ho wever, style transfer for stereoscopic images is still a missing piece. Different from processing a monocular image, the two views of a stylized stereoscopic pair are required to be consistent to provide observers a comfortable visual experience. In this paper, we propose a novel dual path network for view-consistent style transfer on stereoscopic images. While each view of the stereoscopic pair is processed in an individual path, a novel feature aggregation strategy is proposed to effectively share information between the two paths. Besides a traditional perceptual loss being used for controlling the style transfer quality in each view, a multi-layer view loss is leveraged to enforce the network to coordinate the learning of both the paths to generate view-consistent stylized results. Extensive experiments show that, compared against previous methods, our proposed model can produce stylized stereoscopic images which achieve decent view consistency.
Despite having promising results, style transfer, which requires preparing style images in advance, may result in lack of creativity and accessibility. Following human instruction, on the other hand, is the most natural way to perform artistic style transfer that can significantly improve controllability for visual effect applications. We introduce a new task -- language-driven image style transfer (texttt{LDIST}) -- to manipulate the style of a content image, guided by a text. We propose contrastive language visual artist (CLVA) that learns to extract visual semantics from style instructions and accomplish texttt{LDIST} by the patch-wise style discriminator. The discriminator considers the correlation between language and patches of style images or transferred results to jointly embed style instructions. CLVA further compares contrastive pairs of content image and style instruction to improve the mutual relativeness between transfer results. The transferred results from the same content image can preserve consistent content structures. Besides, they should present analogous style patterns from style instructions that contain similar visual semantics. The experiments show that our CLVA is effective and achieves superb transferred results on texttt{LDIST}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا