ﻻ يوجد ملخص باللغة العربية
Linear regression is a basic and widely-used methodology in data analysis. It is known that some quantum algorithms efficiently perform least squares linear regression of an exponentially large data set. However, if we obtain values of the regression coefficients as classical data, the complexity of the existing quantum algorithms can be larger than the classical method. This is because it depends strongly on the tolerance error $epsilon$: the best one among the existing proposals is $O(epsilon^{-2})$. In this paper, we propose the new quantum algorithm for linear regression, which has the complexity of $O(epsilon^{-1})$ and keeps the logarithmic dependence on the number of data points $N_D$. In this method, we overcome bottleneck parts in the calculation, which take the form of the sum over data points and therefore have the complexity proportional to $N_D$, using quantum amplitude estimation, and other parts classically. Additionally, we generalize our method to some class of convex optimization problems.
In this paper, we study extended linear regression approaches for quantum state tomography based on regularization techniques. For unknown quantum states represented by density matrices, performing measurements under certain basis yields random outco
Pricing of financial derivatives, in particular early exercisable options such as Bermudan options, is an important but heavy numerical task in financial institutions, and its speed-up will provide a large business impact. Recently, applications of q
In this paper we derive from simple and reasonable assumptions a Gaussian noise model for NISQ Quantum Amplitude Estimation (QAE). We provide results from QAE run on various IBM superconducting quantum computers and Honeywells H1 trapped-ion quantum
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different o
We explore whether quantum advantages can be found for the zeroth-order online convex optimization problem, which is also known as bandit convex optimization with multi-point feedback. In this setting, given access to zeroth-order oracles (that is, t