ﻻ يوجد ملخص باللغة العربية
Cloud applications are increasingly shifting from large monolithic services, to large numbers of loosely-coupled, specialized microservices. Despite their advantages in terms of facilitating development, deployment, modularity, and isolation, microservices complicate resource management, as dependencies between them introduce backpressure effects and cascading QoS violations. We present Sinan, a data-driven cluster manager for interactive cloud microservices that is online and QoS-aware. Sinan leverages a set of scalable and validated machine learning models to determine the performance impact of dependencies between microservices, and allocate appropriate resources per tier in a way that preserves the end-to-end tail latency target. We evaluate Sinan both on dedicated local clusters and large-scale deployments on Google Compute Engine (GCE) across representative end-to-end applications built with microservices, such as social networks and hotel reservation sites. We show that Sinan always meets QoS, while also maintaining cluster utilization high, in contrast to prior work which leads to unpredictable performance or sacrifices resource efficiency. Furthermore, the techniques in Sinan are explainable, meaning that cloud operators can yield insights from the ML models on how to better deploy and design their applications to reduce unpredictable performance.
Cloud service providers are distributing data centers geographically to minimize energy costs through intelligent workload distribution. With increasing data volumes in emerging cloud workloads, it is critical to factor in the network costs for trans
The Internet of Things (IoT) paradigm is expected to bring ubiquitous intelligence through new applications in order to enhance living and other environments. Several research and standardization studies are now focused on the Middleware level of the
To promote the benefits of the Internet of Things (IoT) in smart communities and smart cities, a real-time data marketplace middleware platform, called the Intelligent IoT Integrator (I3), has been recently proposed. While facilitating the easy excha
Future wireless access networks need to support diversified quality of service (QoS) metrics required by various types of Internet-of-Things (IoT) devices, e.g., age of information (AoI) for status generating sources and ultra low latency for safety
Cloud platform came into existence primarily to accelerate IT delivery and to promote innovation. To this point, it has performed largely well to the expectations of technologists, businesses and customers. The service aspect of this technology has p