ترغب بنشر مسار تعليمي؟ اضغط هنا

Security and Privacy of performing Data Analytics in the cloud - A three-way handshake of Technology, Policy, and Management

257   0   0.0 ( 0 )
 نشر من قبل Nidhi Rastogi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cloud platform came into existence primarily to accelerate IT delivery and to promote innovation. To this point, it has performed largely well to the expectations of technologists, businesses and customers. The service aspect of this technology has paved the road for a faster set up of infrastructure and related goals for both startups and established organizations. This has further led to quicker delivery of many user-friendly applications to the market while proving to be a commercially viable option to companies with limited resources. On the technology front, the creation and adoption of this ecosystem has allowed easy collection of massive data from various sources at one place, where the place is sometimes referred as just the cloud. Efficient data mining can be performed on raw data to extract potentially useful information, which was not possible at this scale before. Targeted advertising is a common example that can help businesses. Despite these promising offerings, concerns around security and privacy of user information suppressed wider acceptance and an all-encompassing deployment of the cloud platform. In this paper, we discuss security and privacy concerns that occur due to data exchanging hands between a cloud servicer provider (CSP) and the primary cloud user - the data collector, from the content generator. We offer solutions that encompass technology, policy and sound management of the cloud service asserting that this approach has the potential to provide a holistic solution.



قيم البحث

اقرأ أيضاً

Today, wearable internet-of-things (wIoT) devices continuously flood the cloud data centers at an enormous rate. This increases a demand to deploy an edge infrastructure for computing, intelligence, and storage close to the users. The emerging paradi gm of fog computing could play an important role to make wIoT more efficient and affordable. Fog computing is known as the cloud on the ground. This paper presents an end-to-end architecture that performs data conditioning and intelligent filtering for generating smart analytics from wearable data. In wIoT, wearable sensor devices serve on one end while the cloud backend offers services on the other end. We developed a prototype of smart fog gateway (a middle layer) using Intel Edison and Raspberry Pi. We discussed the role of the smart fog gateway in orchestrating the process of data conditioning, intelligent filtering, smart analytics, and selective transfer to the cloud for long-term storage and temporal variability monitoring. We benchmarked the performance of developed prototypes on real-world data from smart e-textile gloves. Results demonstrated the usability and potential of proposed architecture for converting the real-world data into useful analytics while making use of knowledge-based models. In this way, the smart fog gateway enhances the end-to-end interaction between wearables (sensor devices) and the cloud.
Big data is gaining overwhelming attention since the last decade. Almost all the fields of science and technology have experienced a considerable impact from it. The cloud computing paradigm has been targeted for big data processing and mining in a m ore efficient manner using the plethora of resources available from computing nodes to efficient storage. Cloud data mining introduces the concept of performing data mining and analytics of huge data in the cloud availing the cloud resources. But can we do better? Yes, of course! The main contribution of this chapter is the identification of four game-changing technologies for the acceleration of computing and analysis of data mining tasks in the cloud. Graphics Processing Units can be used to further accelerate the mining or analytic process, which is called GPU accelerated analytics. Further, Approximate Computing can also be introduced in big data analytics for bringing efficacy in the process by reducing time and energy and hence facilitating greenness in the entire computing process. Quantum Computing is a paradigm that is gaining pace in recent times which can also facilitate efficient and fast big data analytics in very little time. We have surveyed these three technologies and established their importance in big data mining with a holistic architecture by combining these three game-changers with the perspective of big data. We have also talked about another future technology, i.e., Neural Processing Units or Neural accelerators for researchers to explore the possibilities. A brief explanation of big data and cloud data mining concepts are also presented here.
Cellular networks represent a critical infrastructure and their security is thus crucial. 5G - the latest generation of cellular networks - combines different technologies to increase capacity, reduce latency, and save energy. Due to its complexity a nd scale, however, ensuring its security is extremely challenging. In this white paper, we outline recent approaches supporting systematic analyses of 4G LTE and 5G protocols and their related defenses and introduce an initial security and privacy roadmap, covering different research challenges, including formal and comprehensive analyses of cellular protocols as defined by the standardization groups, verification of the software implementing the protocols, the design of robust defenses, and application and device security.
Cloud service providers are distributing data centers geographically to minimize energy costs through intelligent workload distribution. With increasing data volumes in emerging cloud workloads, it is critical to factor in the network costs for trans ferring workloads across data centers. For geo-distributed data centers, many researchers have been exploring strategies for energy cost minimization and intelligent inter-data-center workload distribution separately. However, prior work does not comprehensively and simultaneously consider data center energy costs, data transfer costs, and data center queueing delay. In this paper, we propose a novel game theory-based workload management framework that takes a holistic approach to the cloud operating cost minimization problem by making intelligent scheduling decisions aware of data transfer costs and the data center queueing delay. Our framework performs intelligent workload management that considers heterogeneity in data center compute capability, cooling power, interference effects from task co-location in servers, time-of-use electricity pricing, renewable energy, net metering, peak demand pricing distribution, and network pricing. Our simulations show that the proposed game-theoretic technique can minimize the cloud operating cost more effectively than existing approaches.
The synergy between the cloud and the IoT has emerged largely due to the cloud having attributes which directly benefit the IoT and enable its continued growth. IoT adopting Cloud services has brought new security challenges. In this book chapter, we pursue two main goals: 1) to analyse the different components of Cloud computing and the IoT and 2) to present security and privacy problems that these systems face. We thoroughly investigate current security and privacy preservation solutions that exist in this area, with an eye on the Industrial Internet of Things, discuss open issues and propose future directions
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا