ﻻ يوجد ملخص باللغة العربية
This paper outlines two approaches|based on counterexample-guided abstraction refinement (CEGAR) and counterexample-guided inductive synthesis (CEGIS), respectively to the automated synthesis of finite-state probabilistic models and programs. Our CEGAR approach iteratively partitions the design space starting from an abstraction of this space and refines this by a light-weight analysis of verification results. The CEGIS technique exploits critical subsystems as counterexamples to prune all programs behaving incorrectly on that input. We show the applicability of these synthesis techniques to sketching of probabilistic programs, controller synthesis of POMDPs, and software product lines.
Since regular expressions (abbrev. regexes) are difficult to understand and compose, automatically generating regexes has been an important research problem. This paper introduces TransRegex, for automatically constructing regexes from both natural l
In the present paper, we construct quantum Markov chains (QMC) over the Comb graphs. As an application of this construction, it is proved the existence of the disordered phase for the Ising type models (within QMC scheme) over the Comb graphs. Moreov
We extend the simply-typed guarded $lambda$-calculus with discrete probabilities and endow it with a program logic for reasoning about relational properties of guarded probabilistic computations. This provides a framework for programming and reasonin
In this paper, we consider the classical Ising model on the Cayley tree of order k and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the fou
Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal