ﻻ يوجد ملخص باللغة العربية
In the present paper, we construct quantum Markov chains (QMC) over the Comb graphs. As an application of this construction, it is proved the existence of the disordered phase for the Ising type models (within QMC scheme) over the Comb graphs. Moreover, it is also established that the associated QMC has clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMC over non-regular graphs is given.
In this paper, we consider the classical Ising model on the Cayley tree of order k and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the fou
Inspired by the classical spectral analysis of birth-death chains using orthogonal polynomials, we study an analogous set of constructions in the context of open quantum dynamics and related walks. In such setting, block tridiagonal matrices and matr
Connections between the 1-excitation dynamics of spin lattices and quantum walks on graphs will be surveyed. Attention will be paid to perfect state transfer (PST) and fractional revival (FR) as well as to the role played by orthogonal polynomials in
We introduce quantum Markov states (QMS) in a general tree graph $G= (V, E)$, extending the Cayley trees case. We investigate the Markov property w.r.t. the finer structure of the considered tree. The main result of this paper concerns the diagonaliz
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n