ﻻ يوجد ملخص باللغة العربية
Near term quantum computers suffer from the presence of different noise sources. In order to mitigate for this effect and acquire results with significantly better accuracy, there is the urge of designing efficient error correction or error mitigation schemes. The cost of such techniques is usually high in terms of resource requirements, either in hardware or at the algorithmic level. In this work, we follow a pragmatic approach and we use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics. We investigate different repetition code layouts and we propose a circular repetition scheme with connectivity requirements that are native on IBM Quantum hardware. We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model. We highlight the effect of using the proposed scheme in an electronic structure VQE calculation and in the simulation of time evolution for a quantum Ising model.
We demonstrate the application of pattern recognition algorithms via hidden Markov models (HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detecting qubit state transitions and makes for a robust classificatio
We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of $d$-level systems for large dimension $d$. We study the performance of one-way quantum repeaters with th
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network the
We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quan
Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset of this class--number-phase codes--which inclu