ﻻ يوجد ملخص باللغة العربية
Motivated by the newly observed $^{39}$Na in experiments, systematic calculations of global nuclear binding energies with seven Skyrme forces are performed. We demonstrate the strong correlation between the two-neutron separation energies ($S_{2n}$) of $^{39}$Na and the total number of bound nuclei of the whole nuclear landscape. Furthermore, with calculated nuclear masses, we perform astrophysical rapid-neutron capture process ($r$-process) simulations by using nuclear reaction code TALYS and nuclear reaction network code SkyNet. $r$-process abundances from ejecta of neutron star mergers and core-collapse supernova are compared. Prominent covariance correlations between nuclear landscape boundaries and neutron-rich $r$-process abundances before the third peak are shown. This study highlights the needs for further experimental studies of drip-line nuclei around $^{39}$Na for better constraints on nuclear landscape boundaries and $r$-process.
Nuclear masses are one of the key ingredients of nuclear physics that go into astrophysical simulations of the $r$ process. Nuclear masses effect $r$-process abundances by entering into calculations of Q-values, neutron capture rates, photo-dissociat
The impact of nuclear mass uncertainties on the emph{r}-process abundances has been systematically studied with the classical emph{r}-process model by varying the mass of every individual nucleus in the range of $pm0.1$ to $pm3.0 mathrm{MeV}$ based o
We have performed for the first time a complete $r$-process mass sensitivity study in the $N=82$ region. We take into account how an uncertainty in a single nuclear mass propagates to influence important quantities of neighboring nuclei, including Q-
About half of the heavy elements in the Solar System were created by rapid neutron capture, or r-process, nucleosynthesis. In the r-process, heavy elements are built up via a sequence of neutron captures and beta decays in which an intense neutron fl
We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effec