ﻻ يوجد ملخص باللغة العربية
We have performed for the first time a complete $r$-process mass sensitivity study in the $N=82$ region. We take into account how an uncertainty in a single nuclear mass propagates to influence important quantities of neighboring nuclei, including Q-values and reaction rates. We demonstrate that nuclear mass uncertainties of $pm0.5$ MeV in the $N=82$ region result in up to an order of magnitude local change in $r$-process abundance predictions. We identify key nuclei in the study whose mass has a substantial impact on final $r$-process abundances and could be measured at future radioactive beam facilities.
Nuclear masses are one of the key ingredients of nuclear physics that go into astrophysical simulations of the $r$ process. Nuclear masses effect $r$-process abundances by entering into calculations of Q-values, neutron capture rates, photo-dissociat
The impact of nuclear mass uncertainties on the emph{r}-process abundances has been systematically studied with the classical emph{r}-process model by varying the mass of every individual nucleus in the range of $pm0.1$ to $pm3.0 mathrm{MeV}$ based o
Based on a simple site-independent approach, we attempt to reproduce the solar $r$-process abundance with four nuclear mass models, and investigate the impact of the nuclear mass uncertainties on the $r$ process. In this paper, we first analyze the r
The rapid neutron capture process (r-process) is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncerta
Motivated by the newly observed $^{39}$Na in experiments, systematic calculations of global nuclear binding energies with seven Skyrme forces are performed. We demonstrate the strong correlation between the two-neutron separation energies ($S_{2n}$)