ﻻ يوجد ملخص باللغة العربية
Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic $r$-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production requires rapid kilonova detection (within $sim 1$ day of merger) as well as multi-wavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to $z sim 1$ within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatorys LSST, ULTRASAT, and VISTA can observe some kilonovae out to $z sim 0.1$ ($sim$475 Mpc), while DDOTI, MeerLICHT, PRIME, $Swift$/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following non-detections and explore variation in detectability with these ejecta parameters.
We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgos third observing run. We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger
HATSouth is the worlds first network of automated and homogeneous telescopes that is capable of year-round 24-hour monitoring of positions over an entire hemisphere of the sky. The primary scientific goal of the network is to discover and characteriz
Transiting planets orbiting bright stars are the most favorable targets for follow-up and characterization. We report the discovery of the transiting hot Jupiter XO-7 b and of a second, massive companion on a wide orbit around a circumpolar, bright,
Black hole-main sequence star (BH-MS) binaries are one of the targets of the future data releases of the astrometric satellite {it Gaia}. They are supposed to be formed in two main sites: a galactic field and star clusters. However, previous work has
In this chapter we present a brief summary of methods, instruments and calibration techniques used in modern astronomical polarimetry in the optical wavelengths. We describe the properties of various polarization devices and detectors used for optica