ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective semi-ampleness of Hodge line bundles on curves I

119   0   0.0 ( 0 )
 نشر من قبل Chuyu Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Chuyu Zhou




اسأل ChatGPT حول البحث

In this note, we prove effective semi-ampleness conjecture due to Prokhorov and Shokurov for a special case, more concretely, for Q-Gorenstein klt-trivial fibrations over smooth projective curves whose fibers are all klt log Calabi-Yau pairs of Fano type.



قيم البحث

اقرأ أيضاً

We show that the Nakai--Moishezon ampleness criterion holds for real line bundles on complete schemes. As applications, we treat the relative Nakai--Moishezon ampleness criterion for real line bundles and the Nakai--Moishezon ampleness criterion for real line bundles on complete algebraic spaces. The main ingredient of this paper is Birkars characterization of augmented base loci of real divisors on projective schemes.
141 - Marina Logares 2018
This is a review article on some applications of generalised parabolic structures to the study of torsion free sheaves and $L$-twisted Hitchin pairs on nodal curves. In particular, we survey on the relation between representations of the fundamental group of a nodal curve and the moduli spaces of generalised parabolic bundles and generalised parabolic $L$-twisted Hitchin pairs on its normalisation as well as on an analogue of the Hitchin map for generalised parabolic $L$-twisted Hitchin pairs.
Mehta and Seshadri have proved that the set of equivalence classes of irreducible unitary representations of the fundamental group of a punctured compact Riemann surface, can be identified with equivalence classes of stable parabolic bundles of parab olic degree zero on the compact Riemann surface. In this note, we discuss the Mehta-Seshadri correspondence over an irreducible projective curve with at most nodes as singularities.
Studying degenerations of moduli spaces of semistable principal bundles on smooth curves leads to the problem of constructing and studying moduli spaces on singular curves. In this note, we will see that the moduli spaces of $delta$-semistable pseudo bundles on a nodal curve constructed by the first author become, for large values of $delta$, the moduli spaces for semistable singular principal bundles. The latter are reasonable candidates for degenerations and a potential basis of further developments as on irreducible nodal curves. In particular, we find a notion of semistability for principal bundles on reducible nodal curves. The understanding of the asymptotic behavior of $delta$-semistability rests on a lemma from geometric invariant theory. The results will allow the construction of a universal moduli space of semistable singular principal bundles relative to the moduli space $overline{mathcal M}_g$ of stable curves of genus $g$.
We call a sheaf on an algebraic variety immaculate if it lacks any cohomology including the zero-th one, that is, if the derived version of the global section functor vanishes. Such sheaves are the basic tools when building exceptional sequences, inv estigating the diagonal property, or the toric Frobenius morphism. In the present paper we focus on line bundles on toric varieties. First, we present a possibility of understanding their cohomology in terms of their (generalized) momentum polytopes. Then we present a method to exhibit the entire locus of immaculate divisors within the class group. This will be applied to the cases of smooth toric varieties of Picard rank two and three and to those being given by splitting fans. The locus of immaculate line bundles contains several linear strata of varying dimensions. We introduce a notion of relative immaculacy with respect to certain contraction morphisms. This notion will be stronger than plain immaculacy and provides an explanation of some of these linear strata.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا