ﻻ يوجد ملخص باللغة العربية
Mehta and Seshadri have proved that the set of equivalence classes of irreducible unitary representations of the fundamental group of a punctured compact Riemann surface, can be identified with equivalence classes of stable parabolic bundles of parabolic degree zero on the compact Riemann surface. In this note, we discuss the Mehta-Seshadri correspondence over an irreducible projective curve with at most nodes as singularities.
This is a review article on some applications of generalised parabolic structures to the study of torsion free sheaves and $L$-twisted Hitchin pairs on nodal curves. In particular, we survey on the relation between representations of the fundamental
Studying degenerations of moduli spaces of semistable principal bundles on smooth curves leads to the problem of constructing and studying moduli spaces on singular curves. In this note, we will see that the moduli spaces of $delta$-semistable pseudo
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the speci
In this note, we prove effective semi-ampleness conjecture due to Prokhorov and Shokurov for a special case, more concretely, for Q-Gorenstein klt-trivial fibrations over smooth projective curves whose fibers are all klt log Calabi-Yau pairs of Fano type.
We investigate orthogonal and symplectic bundles with parabolic structure, over a curve.