ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter estimation for space-based gravitational wave detectors with ringdown signals

233   0   0.0 ( 0 )
 نشر من قبل Chunyu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike ground-based gravitational wave detectors, space-based gravitational wave detectors can detect the ringdown signals from massive black hole binary mergers with large signal-to-noise ratio, and help to extract the source parameters and localize the source. To reduce the computation time in Fisher information matrix, we derive the analytical formulas of frequency-domain ringdown signals for heliocentric detectors and geocentric detectors by considering the effect of the harmonic phases, the rotation period of the geocentric detector, and the detector arm length. We explore the median errors of parameter estimation and source localization with ringdown singals from binaries with different masses and different redshifts. Using a binary source with the total mass $M=10^7 M_odot$ at the redshift $z=1$, we analyze the dependence of these errors on the sky position. We find that the network of space-based gravitational wave detectors can significantly improve the source localization at the ringdown stage.



قيم البحث

اقرأ أيضاً

Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis.
113 - Stefan Grimm , Jan Harms 2020
The first detection of a gravitational-wave signal of a coalescence of two black holes marked the beginning of the era of gravitational-wave astronomy, which opens exciting new possibilities in the fields of astronomy, astrophysics and cosmology. The currently operating detectors of the LIGO and Virgo collaborations are sensitive at relatively high frequencies, from 10 Hz up to about a kHz, and are able to detect gravitational waves emitted in a short time frame of less than a second (binary black holes) to minutes (binary neutron stars). Future missions like LISA will be sensitive in lower frequency ranges, which will make it possible to detect gravitational waves emitted long before these binaries merge. In this article, we investigate the possibilities for parameter estimation using the Fisher-matrix formalism with combined information from present and future detectors in different frequency bands. The detectors we consider are the LIGO/Virgo detectors, the Einstein Telescope (ET), the Laser Interferometer Space Antenna (LISA), and the first stage of the Deci- Hertz Interferometer Gravitational wave Observatory (B-DECIGO). The underlying models are constructed in time domain, which allows us to accurately model long-duration signal observations with multiband (or broadband) detector networks on parameter estimation. We assess the benefit of combining information from ground-based and space-borne detectors, and how choices of the orbit of B-DECIGO influence parameter estimates.
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model s election are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors.
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an alytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific quadrature rule, to perform fast and accurate likelihood evaluations. These are the dominant cost in Markov chain Monte Carlo (MCMC) algorithms, which are widely employed in parameter estimation studies, and so ROQs offer a new way to accelerate GW parameter estimation. We illustrate our approach using a four dimensional GW burst model embedded in noise. We build an ROQ for this model, and perform four dimensional MCMC searches with both the standard and ROQs quadrature rules, showing that, for this model, the ROQ approach is around 25 times faster than the standard approach with essentially no loss of accuracy. The speed-up from using ROQs is expected to increase for more complex GW signal models and therefore has significant potential to accelerate parameter estimation of GW sources such as compact binary coalescences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا