ﻻ يوجد ملخص باللغة العربية
State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location and time sensitive, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. We introduce AirNet, a novel training and analog transmission method that allows efficient wireless delivery of DNNs. We first train the DNN with noise injection to counter the wireless channel noise. We also employ pruning to reduce the channel bandwidth necessary for transmission, and perform knowledge distillation from a larger model to achieve satisfactory performance, despite the channel perturbations. We show that AirNet achieves significantly higher test accuracy compared to digital alternatives under the same bandwidth and power constraints. It also exhibits graceful degradation with channel quality, which reduces the requirement for accurate channel estimation.
IoT systems typically involve separate data collection and processing, and the former faces the scalability issue when the number of nodes increases. For some tasks, only the result of data fusion is needed. Then, the whole process can be realized in
An adversarial deep learning approach is presented to launch over-the-air spectrum poisoning attacks. A transmitter applies deep learning on its spectrum sensing results to predict idle time slots for data transmission. In the meantime, an adversary
In typical sensor networks, data collection and processing are separated. A sink collects data from all nodes sequentially, which is very time consuming. Over-the-air computation, as a new diagram of sensor networks, integrates data collection and pr
Autonomous vehicles (AVs) can achieve the desired results within a short duration by offloading tasks even requiring high computational power (e.g., object detection (OD)) to edge clouds. However, although edge clouds are exploited, real-time OD cann
The IEEE 802.1 time-sensitive networking (TSN) standards aim at improving the real-time capabilities of standard Ethernet. TSN is widely recognized as the long-term replacement of proprietary technologies for industrial control systems. However, wire