ﻻ يوجد ملخص باللغة العربية
Machine Reading Comprehension (MRC) is an important testbed for evaluating models natural language understanding (NLU) ability. There has been rapid progress in this area, with new models achieving impressive performance on various benchmarks. However, existing benchmarks only evaluate models on in-domain test sets without considering their robustness under test-time perturbations or adversarial attacks. To fill this important gap, we construct AdvRACE (Adversarial RACE), a new model-agnostic benchmark for evaluating the robustness of MRC models under four different types of adversarial attacks, including our novel distractor extraction and generation attacks. We show that state-of-the-art (SOTA) models are vulnerable to all of these attacks. We conclude that there is substantial room for building more robust MRC models and our benchmark can help motivate and measure progress in this area. We release our data and code at https://github.com/NoviScl/AdvRACE .
Recent studies report that many machine reading comprehension (MRC) models can perform closely to or even better than humans on benchmark datasets. However, existing works indicate that many MRC models may learn shortcuts to outwit these benchmarks,
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language
Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear,
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence s
In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose a