ﻻ يوجد ملخص باللغة العربية
The Neil Gehrels Swift observatory observe Gamma-Ray bursts (GRBs) plateaus in X-rays. We test the reliability of the closure relations through the fireball model when dealing with the GRB plateau emission. We analyze 455 X-ray lightcurves (LCs) collected by emph{Swift} from 2005 (January) until 2019 (August) for which the redshift is both known and unknown using the phenomenological Willingale 2007 model. Using these fits, we analyze the emission mechanisms and astrophysical environments of these GRBs through the closure relations within the time interval of the plateau emission. Finally, we test the 3D fundamental plane relation (Dainotti relation) which connects the prompt peak luminosity, the time at the end of the plateau (rest-frame), and the luminosity at that time, on the GRBs with redshift, concerning groups determined by the closure relations. This allows us to check if the intrinsic scatter sigma_{int} of any of these groups is reduced compared to previous literature. The most fulfilled environments for the electron spectral distribution, p>2, are Wind Slow Cooling (SC) and ISM Slow Cooling for cases in which the parameter q, which indicates the flatness of the plateau emission and accounts for the energy injection, is =0 and =0.5, respectively, both in the cases with known and unknown redshifts. We also find that for the sGRBs All ISM Environments with $q=0$ have the smallest sigma_{int}=0.04 pm 0.15 in terms of the fundamental plane relation holding a probability of occurring by chance of p=0.005. We have shown that the majority of GRBs presenting the plateau emission fulfil the closure relations, including the energy injection, with a particular preference for the Wind SC environment. The subsample of GRBs that fulfil given relations can be used as possible standard candles and can suggest a way to reduce the intrinsic scatter of these studied relationships.
Gamma-Ray Bursts (GRBs) are the most explosive phenomena in the Universe after the Big Bang. A large fraction of GRB lightcurves (LCs) shows X-ray plateaus. We perform the most comprehensive analysis of all GRBs (with known and unknown redshifts) wit
The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distributio
The synchrotron external shock model predicts the evolution of the spectral ($beta$) and temporal ($alpha$) indices during the gamma-ray burst (GRB) afterglow for different environmental density profiles, electron spectral indices, electron cooling r
Using Gaussian Mixture Model and Expectation Maximization algorithm, we have performed a density estimation in the framework of $T_{90}$ versus hardness ratio for 296 Swift/BAT GRBs with known redshift. Here, Bayesian Information Criterion has been t
Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate the