ترغب بنشر مسار تعليمي؟ اضغط هنا

Closure relations during the plateau emission of Swift GRBs and the fundamental plane

67   0   0.0 ( 0 )
 نشر من قبل Aleksander Lenart
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Neil Gehrels Swift observatory observe Gamma-Ray bursts (GRBs) plateaus in X-rays. We test the reliability of the closure relations through the fireball model when dealing with the GRB plateau emission. We analyze 455 X-ray lightcurves (LCs) collected by emph{Swift} from 2005 (January) until 2019 (August) for which the redshift is both known and unknown using the phenomenological Willingale 2007 model. Using these fits, we analyze the emission mechanisms and astrophysical environments of these GRBs through the closure relations within the time interval of the plateau emission. Finally, we test the 3D fundamental plane relation (Dainotti relation) which connects the prompt peak luminosity, the time at the end of the plateau (rest-frame), and the luminosity at that time, on the GRBs with redshift, concerning groups determined by the closure relations. This allows us to check if the intrinsic scatter sigma_{int} of any of these groups is reduced compared to previous literature. The most fulfilled environments for the electron spectral distribution, p>2, are Wind Slow Cooling (SC) and ISM Slow Cooling for cases in which the parameter q, which indicates the flatness of the plateau emission and accounts for the energy injection, is =0 and =0.5, respectively, both in the cases with known and unknown redshifts. We also find that for the sGRBs All ISM Environments with $q=0$ have the smallest sigma_{int}=0.04 pm 0.15 in terms of the fundamental plane relation holding a probability of occurring by chance of p=0.005. We have shown that the majority of GRBs presenting the plateau emission fulfil the closure relations, including the energy injection, with a particular preference for the Wind SC environment. The subsample of GRBs that fulfil given relations can be used as possible standard candles and can suggest a way to reduce the intrinsic scatter of these studied relationships.



قيم البحث

اقرأ أيضاً

Gamma-Ray Bursts (GRBs) are the most explosive phenomena in the Universe after the Big Bang. A large fraction of GRB lightcurves (LCs) shows X-ray plateaus. We perform the most comprehensive analysis of all GRBs (with known and unknown redshifts) wit h plateau emission observed by The Neil Gehrels Swift Observatory from its launch until August 2019. We fit 455 LCs showing a plateau and explore whether these LCs follow closure relations, relations between the temporal and spectral indices of the afterglow, corresponding to 2 distinct astrophysical environments and cooling regimes within the external forward shock (ES) model, and find that the ES model works for the majority of cases. The most favored environments are a constant density interstellar or wind medium with slow cooling. We also confirm the existence of the fundamental plane relation between the rest-frame time and luminosity at the end of the plateau emission and the peak prompt luminosity for this enlarged sample, and test this relation on groups corresponding to the astrophysical environments of our known redshift sample. The plane becomes a crucial discriminant corresponding to these environments in terms of the best fitting parameters and dispersions. Most GRBs for which the closure relations are fulfilled with respect to astrophysical environments have an intrinsic scatter sigma compatible within 1 sigma of that of the Gold GRBs, a subset of long GRBs with relatively flat plateaus. We also find that GRBs satisfying closure relations indicating a fast cooling regime have a lower sigma than ever previously found in literature.
151 - P.A. Curran 2009
The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distributio n, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in half of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.
The synchrotron external shock model predicts the evolution of the spectral ($beta$) and temporal ($alpha$) indices during the gamma-ray burst (GRB) afterglow for different environmental density profiles, electron spectral indices, electron cooling r egimes, and regions of the spectrum. We study the relationship between $alpha$ and $beta$, the so-called closure relations with GRBs detected by textit{Fermi} Large Area Telescope (textit{Fermi}-LAT) from 2008 August to 2018 August. The spectral and temporal indices for the > 100 MeV emission from the textit{Fermi}-LAT as determined in the Second Fermi-LAT Gamma-ray Burst Catalog (2FLGC) are used in this work. We select GRBs whose spectral and temporal indices are well constrained (58 long-duration GRBs and 1 short-duration GRBs) and classify each GRB into the best-matched relation. As a result, we found that a number of GRBs require a very small fraction of the total energy density contained in the magnetic field ($epsilon_{B}$ $lesssim$ 10$^{-7}$). The estimated mean and standard deviation of electron spectral index $mathit{p}$ are 2.40 and 0.44, respectively. The GRBs satisfying a closure relation of the slow cooling tend to have a softer $mathit{p}$ value compared to those of the fast cooling. Moreover, the Kolmogorov--Smirnov test of the two $mathit{p}$ distributions from the fast and slow coolings rejects a hypothesis that the two distributions are drawn from the single reference distribution with a significance of 3.2 $sigma$. Lastly, the uniform density medium is preferred over the medium that decreases like the inverse of distance squared for long-duration GRBs.
Using Gaussian Mixture Model and Expectation Maximization algorithm, we have performed a density estimation in the framework of $T_{90}$ versus hardness ratio for 296 Swift/BAT GRBs with known redshift. Here, Bayesian Information Criterion has been t aken to compare different models. Our investigations show that two instead of three or more Gaussian components are favoured in both the observer and rest frames. Our key findings are consistent with some previous results.
139 - Z.S. Yuan 2015
Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate the ir radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, with the correlations concerning giant radio halos being, in general, the strongest ones. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا