ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Dimensional Classification of the Swift/BAT GRBs

66   0   0.0 ( 0 )
 نشر من قبل Enbo Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Gaussian Mixture Model and Expectation Maximization algorithm, we have performed a density estimation in the framework of $T_{90}$ versus hardness ratio for 296 Swift/BAT GRBs with known redshift. Here, Bayesian Information Criterion has been taken to compare different models. Our investigations show that two instead of three or more Gaussian components are favoured in both the observer and rest frames. Our key findings are consistent with some previous results.



قيم البحث

اقرأ أيضاً

A comprehensive study is given to short gamma-ray bursts (sGRBs) in the third Swift/BAT GRB Catalog from December 2004 to July 2019. We examine in details the temporal properties of the three components in the prompt gamma-ray emission phase, includi ng precursors, main peaks and extended emissions (EE). We investigate the similarity of the main peaks between one-component and two-component sGRBs. It is found that there is no substantial difference among their main peaks. Importantly, comparisons are made between in the single-peaked sGRBs and the double-peaked sGRBs. It is found that our results of main peaks in Swift/BAT sGRBs are essentially consistent with those in CGRO/BATSE ones recently found in our paper I. Interestingly, we suspect, besides the newly-found MODE I/II evolution forms of pulses in BATSE sGRBs in paper I, that there would have more evolution modes of pulses across differently adjacent energy channels in view of the Swift/BAT observations. We further inspect the correlation of the main peaks with either the precursors or the EEs. We find that the main peaks tend to last longer than the precursors but shorter than the EEs. In particular, we verify the power-law correlations related with peak fluxes of the three components, strongly suggesting that they are produced from the similar central engine activities. Especially, we compare the temporal properties of GRB 170817A with other sGRBs with EE and find no obvious differences between them.
The nature of a substantial percentage (about one fifth) of hard X-ray sources discovered with the BAT instrument onboard the Neil Gehrels Swift Observatory (hereafter Swift) is unknown because of the lack of an identified longer-wavelength counterpa rt. Without such follow-up, an X-ray catalogue is of limited astrophysical value: we therefore embarked, since 2009, on a long-term project to uncover the optical properties of sources identified by Swift by using a large suite of ground-based telescopes and instruments. In this work, we continue our programme of characterization of unidentified or poorly studied hard X-ray sources by presenting the results of an optical spectroscopic campaign aimed at pinpointing and classifying the optical counterparts of 35 hard X-ray sources taken from the 70-month BAT catalogue. (...) With the use of optical spectra taken at six different telescopes we were able to identify the main spectral characteristics (continuum type, redshift, and emission or absorption lines) of the observed objects, and determined their nature. We identify and characterize a total of 41 optical candidate counterparts corresponding to 35 hard X-ray sources given that, because of positional uncertainties, multiple lower energy counterparts can sometimes be associated with higher energy detections. We discuss which ones are the actual (or at least most likely) counterparts based on our observational results. In particular, 31 sources in our sample are active galactic nuclei: 16 are classified as Type 1 (with broad and narrow emission lines) and 13 are classified as Type 2 (with narrow emission lines only); two more are BL Lac-type objects. We also identify one LINER, one starburst, and 3 elliptical galaxies. The remaining 5 objects are galactic sources: we identify 4 of them as cataclysmic variables, whereas one is a low mass X-ray binary.
200 - V. La Parola 2014
We have analyzed the Swift data relevant to the high mass X-ray binary Swift J1816.7-1613. The timing analysis of the BAT survey data unveiled a modulation at a period of P_0=118.5+/-0.8 days that we interpret as the orbital period of the X-ray binar y system. The modulation is due to a sequence of bright flares, lasting ~30 d, separated by long quiescence intervals. This behavior is suggestive of a Be binary system, where periodic or quasi-periodic outbursts are the consequence of an enhancement of the accretion flow from the companion star at the periastron passage. The position of Swift J1816.7-1613 on the Corbet diagram strengthens this hypothesis. The broad band 0.2-150 keV spectrum is well modeled with a strongly absorbed power-law with a flat photon index Gamma~ 0.2 and a cut-off at ~ 10 keV.
The Swift Burst Alert Telescope (BAT) hard X-ray transient monitor tracks more than 700 galactic and extragalactic sources on time scales ranging from a single Swift pointing (approximately 20 minutes) to one day. The monitored sources include all ob jects from the Fermi LAT bright source list which are either identified or which have a 95% error confidence radius of less than eight arc minutes. We report on the detection statistics of these sources in the BAT monitor both before and after the launch of Fermi.
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day obse rvation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries; for the new sources that are previously unpublished, we present basic data analysis and interpretations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا