ترغب بنشر مسار تعليمي؟ اضغط هنا

Trimming Feature Extraction and Inference for MCU-based Edge NILM: a Systematic Approach

35   0   0.0 ( 0 )
 نشر من قبل Enrico Tabanelli
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-Intrusive Load Monitoring (NILM) enables the disaggregation of the global power consumption of multiple loads, taken from a single smart electrical meter, into appliance-level details. State-of-the-Art approaches are based on Machine Learning methods and exploit the fusion of time- and frequency-domain features from current and voltage sensors. Unfortunately, these methods are compute-demanding and memory-intensive. Therefore, running low-latency NILM on low-cost, resource-constrained MCU-based meters is currently an open challenge. This paper addresses the optimization of the feature spaces as well as the computational and storage cost reduction needed for executing State-of-the-Art (SoA) NILM algorithms on memory- and compute-limited MCUs. We compare four supervised learning techniques on different classification scenarios and characterize the overall NILM pipelines implementation on a MCU-based Smart Measurement Node. Experimental results demonstrate that optimizing the feature space enables edge MCU-based NILM with 95.15% accuracy, resulting in a small drop compared to the most-accurate feature vector deployment (96.19%) while achieving up to 5.45x speed-up and 80.56% storage reduction. Furthermore, we show that low-latency NILM relying only on current measurements reaches almost 80% accuracy, allowing a major cost reduction by removing voltage sensors from the hardware design.



قيم البحث

اقرأ أيضاً

310 - Jiawei Shao , Jun Zhang 2019
The emergence of various intelligent mobile applications demands the deployment of powerful deep learning models at resource-constrained mobile devices. The device-edge co-inference framework provides a promising solution by splitting a neural networ k at a mobile device and an edge computing server. In order to balance the on-device computation and the communication overhead, the splitting point needs to be carefully picked, while the intermediate feature needs to be compressed before transmission. Existing studies decoupled the design of model splitting, feature compression, and communication, which may lead to excessive resource consumption of the mobile device. In this paper, we introduce an end-to-end architecture, named BottleNet++, that consists of an encoder, a non-trainable channel layer, and a decoder for more efficient feature compression and transmission. The encoder and decoder essentially implement joint source-channel coding via convolutional neural networks (CNNs), while explicitly considering the effect of channel noise. By exploiting the strong sparsity and the fault-tolerant property of the intermediate feature in a deep neural network (DNN), BottleNet++ achieves a much higher compression ratio than existing methods. Furthermore, by providing the channel condition to the encoder as an input, our method enjoys a strong generalization ability in different channel conditions. Compared with merely transmitting intermediate data without feature compression, BottleNet++ achieves up to 64x bandwidth reduction over the additive white Gaussian noise channel and up to 256x bit compression ratio in the binary erasure channel, with less than 2% reduction in accuracy. With a higher compression ratio, BottleNet++ enables splitting a DNN at earlier layers, which leads to up to 3x reduction in on-device computation compared with other compression methods.
63 - Hongjie Zhang 2021
Feature extraction is an efficient approach for alleviating the issue of dimensionality in high-dimensional data. As a popular self-supervised learning method, contrastive learning has recently garnered considerable attention. In this study, we propo sed a unified framework based on a new perspective of contrastive learning (CL) that is suitable for both unsupervised and supervised feature extraction. The proposed framework first constructed two CL graph for uniquely defining the positive and negative pairs. Subsequently, the projection matrix was determined by minimizing the contrastive loss function. In addition, the proposed framework considered both similar and dissimilar samples to unify unsupervised and supervised feature extraction. Moreover, we propose the three specific methods: unsupervised contrastive learning method, supervised contrastive learning method 1 ,and supervised contrastive learning method 2. Finally, the numerical experiments on five real datasets demonstrated the superior performance of the proposed framework in comparison to the existing methods.
45 - Jer^ome Aze 2005
A key data preparation step in Text Mining, Term Extraction selects the terms, or collocation of words, attached to specific concepts. In this paper, the task of extracting relevant collocations is achieved through a supervised learning algorithm, ex ploiting a few collocations manually labelled as relevant/irrelevant. The candidate terms are described along 13 standard statistical criteria measures. From these examples, an evolutionary learning algorithm termed Roger, based on the optimization of the Area under the ROC curve criterion, extracts an order on the candidate terms. The robustness of the approach is demonstrated on two real-world domain applications, considering different domains (biology and human resources) and different languages (English and French).
We introduce supervised feature ranking and feature subset selection algorithms for multivariate time series (MTS) classification. Unlike most existing supervised/unsupervised feature selection algorithms for MTS our techniques do not require a featu re extraction step to generate a one-dimensional feature vector from the time series. Instead it is based on directly computing similarity between individual time series and assessing how well the resulting cluster structure matches the labels. The techniques are amenable to heterogeneous MTS data, where the time series measurements may have different sampling resolutions, and to multi-modal data.
ECG Feature Extraction plays a significant role in diagnosing most of the cardiac diseases. One cardiac cycle in an ECG signal consists of the P-QRS-T waves. This feature extraction scheme determines the amplitudes and intervals in the ECG signal for subsequent analysis. The amplitudes and intervals value of P-QRS-T segment determines the functioning of heart of every human. Recently, numerous research and techniques have been developed for analyzing the ECG signal. The proposed schemes were mostly based on Fuzzy Logic Methods, Artificial Neural Networks (ANN), Genetic Algorithm (GA), Support Vector Machines (SVM), and other Signal Analysis techniques. All these techniques and algorithms have their advantages and limitations. This proposed paper discusses various techniques and transformations proposed earlier in literature for extracting feature from an ECG signal. In addition this paper also provides a comparative study of various methods proposed by researchers in extracting the feature from ECG signal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا