ﻻ يوجد ملخص باللغة العربية
Feature extraction is an efficient approach for alleviating the issue of dimensionality in high-dimensional data. As a popular self-supervised learning method, contrastive learning has recently garnered considerable attention. In this study, we proposed a unified framework based on a new perspective of contrastive learning (CL) that is suitable for both unsupervised and supervised feature extraction. The proposed framework first constructed two CL graph for uniquely defining the positive and negative pairs. Subsequently, the projection matrix was determined by minimizing the contrastive loss function. In addition, the proposed framework considered both similar and dissimilar samples to unify unsupervised and supervised feature extraction. Moreover, we propose the three specific methods: unsupervised contrastive learning method, supervised contrastive learning method 1 ,and supervised contrastive learning method 2. Finally, the numerical experiments on five real datasets demonstrated the superior performance of the proposed framework in comparison to the existing methods.
Model-Based Reinforcement Learning (MBRL) is one category of Reinforcement Learning (RL) algorithms which can improve sampling efficiency by modeling and approximating system dynamics. It has been widely adopted in the research of robotics, autonomou
Deep learning models are shown to be vulnerable to adversarial examples. Though adversarial training can enhance model robustness, typical approaches are computationally expensive. Recent works proposed to transfer the robustness to adversarial attac
In this paper, we proposed a general framework for data poisoning attacks to graph-based semi-supervised learning (G-SSL). In this framework, we first unify different tasks, goals, and constraints into a single formula for data poisoning attack in G-
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for