ترغب بنشر مسار تعليمي؟ اضغط هنا

PLSM: A Parallelized Liquid State Machine for Unintentional Action Detection

71   0   0.0 ( 0 )
 نشر من قبل Dipayan Das
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reservoir Computing (RC) offers a viable option to deploy AI algorithms on low-end embedded system platforms. Liquid State Machine (LSM) is a bio-inspired RC model that mimics the cortical microcircuits and uses spiking neural networks (SNN) that can be directly realized on neuromorphic hardware. In this paper, we present a novel Parallelized LSM (PLSM) architecture that incorporates spatio-temporal read-out layer and semantic constraints on model output. To the best of our knowledge, such a formulation has been done for the first time in literature, and it offers a computationally lighter alternative to traditional deep-learning models. Additionally, we also present a comprehensive algorithm for the implementation of parallelizable SNNs and LSMs that are GPU-compatible. We implement the PLSM model to classify unintentional/accidental video clips, using the Oops dataset. From the experimental results on detecting unintentional action in video, it can be observed that our proposed model outperforms a self-supervised model and a fully supervised traditional deep learning model. All the implemented codes can be found at our repository https://github.com/anonymoussentience2020/Parallelized_LSM_for_Unintentional_Action_Recognition.



قيم البحث

اقرأ أيضاً

From just a short glance at a video, we can often tell whether a persons action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recog nizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains. The project website is available at https://oops.cs.columbia.edu
State-of-the-art temporal action detectors to date are based on two-stream input including RGB frames and optical flow. Although combining RGB frames and optical flow boosts performance significantly, optical flow is a hand-designed representation wh ich not only requires heavy computation, but also makes it methodologically unsatisfactory that two-stream methods are often not learned end-to-end jointly with the flow. In this paper, we argue that optical flow is dispensable in high-accuracy temporal action detection and image level data augmentation (ILDA) is the key solution to avoid performance degradation when optical flow is removed. To evaluate the effectiveness of ILDA, we design a simple yet efficient one-stage temporal action detector based on single RGB stream named DaoTAD. Our results show that when trained with ILDA, DaoTAD has comparable accuracy with all existing state-of-the-art two-stream detectors while surpassing the inference speed of previous methods by a large margin and the inference speed is astounding 6668 fps on GeForce GTX 1080 Ti. Code is available at url{https://github.com/Media-Smart/vedatad}.
A dominant paradigm for learning-based approaches in computer vision is training generic models, such as ResNet for image recognition, or I3D for video understanding, on large datasets and allowing them to discover the optimal representation for the problem at hand. While this is an obviously attractive approach, it is not applicable in all scenarios. We claim that action detection is one such challenging problem - the models that need to be trained are large, and labeled data is expensive to obtain. To address this limitation, we propose to incorporate domain knowledge into the structure of the model, simplifying optimization. In particular, we augment a standard I3D network with a tracking module to aggregate long term motion patterns, and use a graph convolutional network to reason about interactions between actors and objects. Evaluated on the challenging AVA dataset, the proposed approach improves over the I3D baseline by 5.5% mAP and over the state-of-the-art by 4.8% mAP.
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to lo w classification accuracy for these classes. Towards addressing this issue, we observe that there exist natural correlations and anti-correlations among human-object interactions. In this paper, we model the correlations as action co-occurrence matrices and present techniques to learn these priors and leverage them for more effective training, especially on rare classes. The efficacy of our approach is demonstrated experimentally, where the performance of our approach consistently improves over the state-of-the-art methods on both of the two leading HOI detection benchmark datasets, HICO-Det and V-COCO.
Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully des igned by considering diverse learning challenges. Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via convergence property verification and model optimization simulation. CSE-Autoloss involves the search space that cover a wide range of the possible variants of existing losses and discovers best-searched loss function combination within a short time (around 1.5 wall-clock days). We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses across diverse architectures and datasets. Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively. Our searched losses are available at https://github.com/PerdonLiu/CSE-Autoloss.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا