ﻻ يوجد ملخص باللغة العربية
Deep neural networks have achieved remarkable success in single image super-resolution (SISR). The computing and memory requirements of these methods have hindered their application to broad classes of real devices with limited computing power, however. One approach to this problem has been lightweight network architectures that bal- ance the super-resolution performance and the computation burden. In this study, we revisit this problem from an orthog- onal view, and propose a novel learning strategy to maxi- mize the pixel-wise fitting capacity of a given lightweight network architecture. Considering that the initial capacity of the lightweight network is very limited, we present an adaptive importance learning scheme for SISR that trains the network with an easy-to-complex paradigm by dynam- ically updating the importance of image pixels on the basis of the training loss. Specifically, we formulate the network training and the importance learning into a joint optimization problem. With a carefully designed importance penalty function, the importance of individual pixels can be gradu- ally increased through solving a convex optimization problem. The training process thus begins with pixels that are easy to reconstruct, and gradually proceeds to more complex pixels as fitting improves.
Single image super-resolution(SISR) has witnessed great progress as convolutional neural network(CNN) gets deeper and wider. However, enormous parameters hinder its application to real world problems. In this letter, We propose a lightweight feature
Despite convolutional network-based methods have boosted the performance of single image super-resolution (SISR), the huge computation costs restrict their practical applicability. In this paper, we develop a computation efficient yet accurate networ
Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to h
Recent years have witnessed great success of convolutional neural network (CNN) for various problems both in low and high level visions. Especially noteworthy is the residual network which was originally proposed to handle high-level vision problems
Recently, deep learning based single image super-resolution(SR) approaches have achieved great development. The state-of-the-art SR methods usually adopt a feed-forward pipeline to establish a non-linear mapping between low-res(LR) and high-res(HR) i