ﻻ يوجد ملخص باللغة العربية
It is a fact that, when developing a new application, it is virtually impossible to reuse, as-is, existing datasets. This difficulty is the cause of additional costs, with the further drawback that the resulting application will again be hardly reusable. It is a negative loop which consistently reinforces itself and for which there seems to be no way out. iTelos is a general purpose methodology designed to break this loop. Its main goal is to generate reusable Knowledge Graphs (KGs), built reusing, as much as possible, already existing data. The key assumption is that the design of a KG should be done middle-out meaning by this that the design should take into consideration, in all phases of the development: (i) the purpose to be served, that we formalize as a set of competency queries, (ii) a set of pre-existing datasets, possibly extracted from existing KGs, and (iii) a set of pre-existing reference schemas, whose goal is to facilitate sharability. We call these reference schemas, teleologies, as distinct from ontologies, meaning by this that, while having a similar purpose, they are designed to be easily adapted, thus becoming a key enabler of itelos.
The chase is a well-established family of algorithms used to materialize Knowledge Bases (KBs), like Knowledge Graphs (KGs), to tackle important tasks like query answering under dependencies or data cleaning. A general problem of chase algorithms is
Entity alignment (EA) aims to find equivalent entities in different knowledge graphs (KGs). Current EA approaches suffer from scalability issues, limiting their usage in real-world EA scenarios. To tackle this challenge, we propose LargeEA to align e
There is growing interest in the use of Knowledge Graphs (KGs) for the representation, exchange, and reuse of scientific data. While KGs offer the prospect of improving the infrastructure for working with scalable and reusable scholarly data consiste
The increasing availability and usage of Knowledge Graphs (KGs) on the Web calls for scalable and general-purpose solutions to store this type of data structures. We propose Trident, a novel storage architecture for very large KGs on centralized syst
Knowledge Graphs (KGs) have emerged as the de-facto standard for modeling and querying datasets with a graph-like structure in the Semantic Web domain. Our focus is on the performance challenges associated with querying KGs. We developed three inform