ﻻ يوجد ملخص باللغة العربية
Knowledge Graphs (KGs) have emerged as the de-facto standard for modeling and querying datasets with a graph-like structure in the Semantic Web domain. Our focus is on the performance challenges associated with querying KGs. We developed three informationally equivalent JSON-based representations for KGs, namely, Subject-based Name/Value (JSON-SNV), Documents of Triples (JSON-DT), and Chain-based Name/Value (JSON-CNV). We analyzed the effects of these representations on query performance by storing them on two prominent document-based Data Management Systems (DMSs), namely, MongoDB and Couchbase and executing a set of benchmark queries over them. We also compared the execution times with row-store Virtuoso, column-store Virtuoso, and mbox{Blazegraph} as three major DMSs with different architectures (aka, RDF-stores). Our results indicate that the representation type has a significant performance impact on query execution. For instance, the JSON-SNV outperforms others by nearly one order of magnitude to execute subject-subject join queries. This and the other results presented in this paper can assist in more accurate benchmarking of the emerging DMSs.
The RDF graph-based data model has seen ever-broadening adoption in recent years, prompting the standardization of the SPARQL query language for RDF, and the development of local and distributed engines for processing SPARQL queries. This survey pape
JavaScript Object Notation or JSON is a ubiquitous data exchange format on the Web. Ingesting JSON documents can become a performance bottleneck due to the sheer volume of data. We are thus motivated to make JSON parsing as fast as possible. Despit
In this work, we present a web-based annotation and querying tool Sangrahaka. It annotates entities and relationships from text corpora and constructs a knowledge graph (KG). The KG is queried using templatized natural language queries. The applicati
It is a fact that, when developing a new application, it is virtually impossible to reuse, as-is, existing datasets. This difficulty is the cause of additional costs, with the further drawback that the resulting application will again be hardly reusa
The chase is a well-established family of algorithms used to materialize Knowledge Bases (KBs), like Knowledge Graphs (KGs), to tackle important tasks like query answering under dependencies or data cleaning. A general problem of chase algorithms is