ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum advantage for noisy channel discrimination

103   0   0.0 ( 0 )
 نشر من قبل Zane Rossi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many quantum mechanical experiments can be viewed as multi-round interactive protocols between known quantum circuits and an unknown quantum process. Fully quantum coherent access to the unknown process is known to provide an advantage in many discrimination tasks compared to when only incoherent access is permitted, but it is unclear if this advantage persists when the process is noisy. Here, we show that a quantum advantage can be maintained when distinguishing between two noisy single qubit rotation channels. Numerical and analytical calculations reveal a distinct transition between optimal performance by fully coherent and fully incoherent protocols as a function of noise strength. Moreover, the size of the region of coherent quantum advantage shrinks inverse polynomially in the number of channel uses, and in an intermediate regime an improved strategy is a hybrid of fully-coherent and fully-incoherent subroutines. The fully coherent protocol is based on quantum signal processing, suggesting a generalizable algorithmic framework for the study of quantum advantage in the presence of realistic noise.



قيم البحث

اقرأ أيضاً

171 - Mark M. Wilde 2020
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum superchannel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.
This paper contributes further to the resource theory of asymmetric distinguishability for quantum strategies, as introduced recently by [Wang et al., Phys. Rev. Research 1, 033169 (2019)]. The fundamental objects in the resource theory are pairs of quantum strategies, which are generalizations of quantum channels that provide a framework to describe any arbitrary quantum interaction. We provide semi-definite program characterizations of the one-shot operational quantities in this resource theory. We then apply these semi-definite programs to study the advantage conferred by adaptive strategies in discrimination and distinguishability distillation of generalized amplitude damping channels.
241 - Renzhi Yuan , Julian Cheng 2020
The quantum discrimination of two non-coherent states draws much attention recently. In this letter, we first consider the quantum discrimination of two noiseless displaced number states. Then we derive the Fock representation of noisy displaced numb er states and address the problem of discriminating between two noisy displaced number states. We further prove that the optimal quantum discrimination of two noisy displaced number states can be achieved by the Kennedy receiver with threshold detection. Simulation results verify the theoretical derivations and show that the error probability of on-off keying modulation using a displaced number state is significantly less than that of on-off keying modulation using a coherent state with the same average energy.
We provide a simple example that illustrates the advantage of adaptive over non-adaptive strategies for quantum channel discrimination. In particular, we give a pair of entanglement-breaking channels that can be perfectly discriminated by means of an adaptive strategy that requires just two channel evaluations, but for which no non-adaptive strategy can give a perfect discrimination using any finite number of channel evaluations.
Quantum channel estimation and discrimination are fundamentally related information processing tasks of interest in quantum information science. In this paper, we analyze these tasks by employing the right logarithmic derivative Fisher information an d the geometric Renyi relative entropy, respectively, and we also identify connections between these distinguishability measures. A key result of our paper is that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric Renyi relative entropy for the interval $alphain(0,1) $ of the Renyi parameter $alpha$. In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling, while in channel discrimination, they lead to improved bounds on error rates in the Chernoff and Hoeffding error exponent settings. More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols that estimate a parameter encoded in a quantum channel, and we use this framework, beyond the aforementioned application, to show that Heisenberg scaling is not possible when a parameter is encoded in a classical-quantum channel. We then identify a number of other conceptual and technical connections between the tasks of estimation and discrimination and the distinguishability measures involved in analyzing each. As part of this work, we present a detailed overview of the geometric Renyi relative entropy of quantum states and channels, as well as its properties, which may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا