ﻻ يوجد ملخص باللغة العربية
Quantum channel estimation and discrimination are fundamentally related information processing tasks of interest in quantum information science. In this paper, we analyze these tasks by employing the right logarithmic derivative Fisher information and the geometric Renyi relative entropy, respectively, and we also identify connections between these distinguishability measures. A key result of our paper is that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric Renyi relative entropy for the interval $alphain(0,1) $ of the Renyi parameter $alpha$. In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling, while in channel discrimination, they lead to improved bounds on error rates in the Chernoff and Hoeffding error exponent settings. More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols that estimate a parameter encoded in a quantum channel, and we use this framework, beyond the aforementioned application, to show that Heisenberg scaling is not possible when a parameter is encoded in a classical-quantum channel. We then identify a number of other conceptual and technical connections between the tasks of estimation and discrimination and the distinguishability measures involved in analyzing each. As part of this work, we present a detailed overview of the geometric Renyi relative entropy of quantum states and channels, as well as its properties, which may be of independent interest.
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover,
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources, i.e., sources that emit one of two possible quantum states with given prior probabilities. Such a source can be
The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measure
Optimally encoding classical information in a quantum system is one of the oldest and most fundamental challenges of quantum information theory. Holevos bound places a hard upper limit on such encodings, while the Holevo-Schumacher-Westmoreland (HSW)
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c