ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric distinguishability measures limit quantum channel estimation and discrimination

132   0   0.0 ( 0 )
 نشر من قبل Vishal Katariya
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum channel estimation and discrimination are fundamentally related information processing tasks of interest in quantum information science. In this paper, we analyze these tasks by employing the right logarithmic derivative Fisher information and the geometric Renyi relative entropy, respectively, and we also identify connections between these distinguishability measures. A key result of our paper is that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric Renyi relative entropy for the interval $alphain(0,1) $ of the Renyi parameter $alpha$. In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling, while in channel discrimination, they lead to improved bounds on error rates in the Chernoff and Hoeffding error exponent settings. More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols that estimate a parameter encoded in a quantum channel, and we use this framework, beyond the aforementioned application, to show that Heisenberg scaling is not possible when a parameter is encoded in a classical-quantum channel. We then identify a number of other conceptual and technical connections between the tasks of estimation and discrimination and the distinguishability measures involved in analyzing each. As part of this work, we present a detailed overview of the geometric Renyi relative entropy of quantum states and channels, as well as its properties, which may be of independent interest.



قيم البحث

اقرأ أيضاً

171 - Mark M. Wilde 2020
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum superchannel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources, i.e., sources that emit one of two possible quantum states with given prior probabilities. Such a source can be represented by a classical-quantum state of a composite system $XA$, corresponding to an ensemble of two quantum states, with $X$ being classical and $A$ being quantum. We study the resource theory for two different classes of free operations: $(i)$ ${rm{CPTP}}_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly stochastic (CDS) maps acting on $XA$. We introduce the notion of symmetric distinguishability of an elementary source and prove that it is a monotone under both these classes of free operations. We study the tasks of distillation and dilution of symmetric distinguishability, both in the one-shot and asymptotic regimes. We prove that in the asymptotic regime, the optimal rate of converting one elementary source to another is equal to the ratio of their quantum Chernoff divergences, under both these classes of free operations. This imparts a new operational interpretation to the quantum Chernoff divergence. We also obtain interesting operational interpretations of the Thompson metric, in the context of the dilution of symmetric distinguishability.
The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measure s are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity, and we evaluate their performance using simulators of quantum computers. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as quantum combs). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate these algorithms by using a variational approach with parameterized quantum circuits and find that they converge well for the examples that we consider.
Optimally encoding classical information in a quantum system is one of the oldest and most fundamental challenges of quantum information theory. Holevos bound places a hard upper limit on such encodings, while the Holevo-Schumacher-Westmoreland (HSW) theorem addresses the question of how many classical messages can be packed into a given quantum system. In this article, we use Sens recent quantum joint typicality results to prove a one-shot multiparty quantum packing lemma generalizing the HSW theorem. The lemma is designed to be easily applicable in many network communication scenarios. As an illustration, we use it to straightforwardly obtain quantum generalizations of well-known classical coding schemes for the relay channel: multihop, coherent multihop, decode-forward, and partial decode-forward. We provide both finite blocklength and asymptotic results, the latter matching existing classical formulas. Given the key role of the classical packing lemma in network information theory, our packing lemma should help open the field to direct quantum generalization.
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c hannel (generalized measurement), and play a central role in quantum communication. In this paper, we propose measures of distance and fidelity between two quantum ensembles. We consider two approaches: the first one is based on the ability to mimic one ensemble given the other one as a resource and is closely related to the Monge-Kantorovich optimal transportation problem, while the second one uses the idea of extended-Hilbert-space (EHS) representations which introduce auxiliary pointer (or flag) states. Both types of measures enjoy a number of desirable properties. The Kantorovich measures, albeit monotonic under deterministic quantum operations, are not monotonic under generalized measurements. In contrast, the EHS measures are. We present operational interpretations for both types of measures. We also show that the EHS fidelity between ensembles provides a novel interpretation of the fidelity between mixed states--the latter is equal to the maximum of the fidelity between all pure-state ensembles whose averages are equal to the mixed states being compared. We finally use the new measures to define distance and fidelity for stochastic quantum channels and positive operator-valued measures (POVMs). These quantities may be useful in the context of tomography of stochastic quantum channels and quantum detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا