ﻻ يوجد ملخص باللغة العربية
Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image and thus enables restoring the original host image without any distortion. However, existing RVW algorithms mostly construct the reversible mapping mechanism for a specific visible watermarking scheme, which is not general. Hence, we propose a generic RVW framework to accommodate various visible watermarking schemes, which is based on Regularized Graph Fourier Transform (GFT) coding. In particular, we obtain a reconstruction data packet -- the compressed difference image between the watermarked image and the original host image, which is embedded into the watermarked image via any conventional reversible data hiding method to facilitate the blind recovery of the host image. The key is to achieve compact compression of the difference image for efficient embedding of the reconstruction data packet. To this end, we propose regularized GFT coding, where the difference image is smoothed via the graph Laplacian regularizer for more efficient compression and then encoded by multi-resolution GFTs in an approximately optimal manner. Experimental results show that the proposed method achieves the state-of-the-art performance with high data compression efficiency, which is applicable to both gray-scale and color images. In addition, the proposed generic framework accommodates various visible watermarking algorithms, which demonstrates strong versatility.
The frequent exchange of multimedia information in the present era projects an increasing demand for copyright protection. In this work, we propose a novel audio zero-watermarking technology based on graph Fourier transform for enhancing the robustne
Digital watermarks have been considered a promising way to fight software piracy. Graph-based watermarking schemes encode authorship/ownership data as control-flow graph of dummy code. In 2012, Chroni and Nikolopoulos developed an ingenious such sche
While many games were designed for steganography and robust watermarking, few focused on reversible watermarking. We present a two-encoder game related to the rate-distortion optimization of content-adaptive reversible watermarking. In the game, Alic
Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, application of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a d
As an efficient watermark attack method, geometric distortions destroy the synchronization between watermark encoder and decoder. And the local geometric distortion is a famous challenge in the watermark field. Although a lot of geometric distortions