ﻻ يوجد ملخص باللغة العربية
We revisit the model-independent decomposition of the gluon correlator, producing T-even and T-odd gluon transverse momentum distributions (TMDs), at leading twist. We propose an expansion of the gluon correlator, using a basis of four tensors (one antisymmetric and three symmetric), which are expressed through generators of the $U(2)$ group acting in the two-dimensional transverse plane. One can do clear interpretations of the two transversity T-odd TMDs with linear polarization of gluons: symmetric and asymmetric under permutation of the transverse spin of the nucleon and the transverse momentum of the gluon. Using light-front wave function (LFWF) representation, we also derive T-even and T-odd gluon TMDs in the nucleon at leading twist. The gluon-three-quark Fock component in the nucleon is considered as bound state of gluon and three-quark core (spectator). The TMDs are constructed as factorized product of two LFWFs and gluonic matrix encoding information about both T-even and T-odd TMDs. In particular, T-odd TMDs arise due to gluon rescattering between the gluon and three-quark spectator. Gluon rescattering effects are parametrized by unknown scalar functions depending on the $x$ and ${bf k}_{perp}$ variables. Our gluon TDMs obey the model-independent Mulders-Rodrigues inequalities. We also derive new sum rules (SRs) involving T-even TMDs. One of the SRs states that the square of the unpolarized TMD is equal to a sum of the squares of three polarized TMDs. Based on the SR derived for T-even gluon TMDs, we make a conjecture that there should two additional SRs involving T-odd gluon TMDs, valid at orders $alpha_s$ and $alpha_s^2$. Then, we check these SRs at small and large values of $x$. We think that our study could serve as useful input for future phenomenological studies of TMDs.
We calculate power corrections to TMD factorization for particle production by gluon-gluon fusion in hadron-hadron collisions.
We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.
Maximally path-dependent gauge-invariant operator definition of the gluon transverse-momentum dependent pdf (gTMD) is discussed. It is argued that the evolution equations for the gTMD in the coordinate representation can be derived from the equations
Transverse momentum dependent (TMD) parton distributions in a proton are important in high energy physics from both theoretical and phenomenological points of view. Using the latest RHIC and LHC data on the inclusive soft hadron production in $pp$ an
In this paper we calculate analytically the perturbative matching coefficients for unpolarized quark and gluon Transverse-Momentum-Dependent (TMD) Parton Distribution Functions (PDFs) and Fragmentation Functions (FFs) through Next-to-Next-to-Next-to-