ﻻ يوجد ملخص باللغة العربية
Transverse momentum dependent (TMD) parton distributions in a proton are important in high energy physics from both theoretical and phenomenological points of view. Using the latest RHIC and LHC data on the inclusive soft hadron production in $pp$ and $AA$ collisions at small transverse momenta, we determine the parameters of the initial TMD gluon density, derived in the framework of quark-gluon string model at the low scale $mu_0 sim 1 - 2$ GeV and refine its large-$x$ behaviour using the LHC data on the $t bar t$ production at $sqrt s = 13$ TeV. Then, we apply the Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation to extend the obtained TMD gluon density to the whole kinematical region. In addition, the complementary TMD valence and sea quark distributions are generated. The latter are evaluated in the approximation where the gluon-to-quark splitting occurs at the last evolution step using the TMD gluon-to-quark splitting function. Several phenomenological applications of the proposed TMD quark and gluon densities to the LHC processes are discussed.
We study the role of the non-perturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at low scale mu0^2 ~ 1 GeV^2 from the fit of the inclusive hadron spectr
We calculate power corrections to TMD factorization for particle production by gluon-gluon fusion in hadron-hadron collisions.
The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, t
We revisit the model-independent decomposition of the gluon correlator, producing T-even and T-odd gluon transverse momentum distributions (TMDs), at leading twist. We propose an expansion of the gluon correlator, using a basis of four tensors (one a
We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.