ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical optimization models for long-term maintenance scheduling of wind power systems

62   0   0.0 ( 0 )
 نشر من قبل Quanjiang Yu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

During the life of a wind farm, various types of costs arise. A large share of the operational cost for a wind farm is due to maintenance of the wind turbine equipment; these costs are especially pronounced for offshore wind farms and provide business opportunities in the wind energy industry. An effective scheduling of the maintenance activities may reduce the costs related to maintenance. We combine mathematical modelling of preventive maintenance scheduling with corrective maintenance strategies. We further consider different types of contracts between the wind farm owner and a maintenance or insurance company, and during different phases of the turbines lives and the contract periods. Our combined preventive and corrective maintenance models are then applied to relevant combinations of the phases of the turbines lives and the contract types. Our case studies show that even with the same initial criteria, the optimal maintenance schedules differ between different phases of time as well as between contract types. One case study reveals a 40% cost reduction and a significantly higher production availability -- 1.8% points -- achieved by our optimization model as compared to a pure corrective maintenance strategy. Another study shows that the number of planned preventive maintenance occasions for a wind farm decreases with an increasing level of an insurance contract regarding reimbursement of costs for broken components.



قيم البحث

اقرأ أيضاً

We suggest a mathematical model for computing and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterium takes into account the current ages of the key components, the major maintenance costs including eve ntual energy production losses as well as the available data monitoring the condition of the wind turbines. We illustrate our approach with a case study based on data collected from several wind farms located in Sweden. Our results show that preventive maintenance planning gives some effect, if the wind turbine components in question live significantly shorter than the turbine itself.
In the wind energy industry, it is of great importance to develop models that accurately forecast the power output of a wind turbine, as such predictions are used for wind farm location assessment or power pricing and bidding, monitoring, and prevent ive maintenance. As a first step, and following the guidelines of the existing literature, we use the supervisory control and data acquisition (SCADA) data to model the wind turbine power curve (WTPC). We explore various parametric and non-parametric approaches for the modeling of the WTPC, such as parametric logistic functions, and non-parametric piecewise linear, polynomial, or cubic spline interpolation functions. We demonstrate that all aforementioned classes of models are rich enough (with respect to their relative complexity) to accurately model the WTPC, as their mean squared error (MSE) is close to the MSE lower bound calculated from the historical data. We further enhance the accuracy of our proposed model, by incorporating additional environmental factors that affect the power output, such as the ambient temperature, and the wind direction. However, all aforementioned models, when it comes to forecasting, seem to have an intrinsic limitation, due to their inability to capture the inherent auto-correlation of the data. To avoid this conundrum, we show that adding a properly scaled ARMA modeling layer increases short-term prediction performance, while keeping the long-term prediction capability of the model.
Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronizatio n of all workers at each iteration, which is hard to scale and could result in the under-utilization of computation resources due to the heterogeneity of the subproblems. To address those limitations of synchronous schemes, this paper proposes an asynchronous distributed optimization method based on the Alternating Direction Method of Multipliers (ADMM) for non-convex optimization. The proposed method only requires local communications and allows each worker to perform local updates with information from a subset of but not all neighbors. We provide sufficient conditions on the problem formulation, the choice of algorithm parameter and network delay, and show that under those mild conditions, the proposed asynchronous ADMM method asymptotically converges to the KKT point of the non-convex problem. We validate the effectiveness of asynchronous ADMM by applying it to the Optimal Power Flow problem in multiple power systems and show that the convergence of the proposed asynchronous scheme could be faster than its synchronous counterpart in large-scale applications.
We explore the use of deep reinforcement learning to provide strategies for long term scheduling of hydropower production. We consider a use-case where the aim is to optimise the yearly revenue given week-by-week inflows to the reservoir and electric ity prices. The challenge is to decide between immediate water release at the spot price of electricity and storing the water for later power production at an unknown price, given constraints on the system. We successfully train a soft actor-critic algorithm on a simplified scenario with historical data from the Nordic power market. The presented model is not ready to substitute traditional optimisation tools but demonstrates the complementary potential of reinforcement learning in the data-rich field of hydropower scheduling.
Driven by climatic processes, wind power generation is inherently variable. Long-term simulated wind power time series are therefore an essential component for understanding the temporal availability of wind power and its integration into future rene wable energy systems. In the recent past, mainly power curve based models such as Renewables.ninja (RN) have been used for deriving synthetic time series for wind power generation despite their need for accurate location information as well as for bias correction, and their insufficient replication of extreme events and short-term power ramps. We assess how time series generated by machine learning models (MLM) compare to RN in terms of their ability to replicate the characteristics of observed nationally aggregated wind power generation for Germany. Hence, we apply neural networks to one MERRA2 reanalysis wind speed input dataset with no location information and one with basic location information. The resulting time series and the RN time series are compared with actual generation. Both MLM time series feature equal or even better time series quality than RN depending on the characteristics considered. We conclude that MLM models can, even when reducing information on turbine locations and turbine types, produce time series of at least equal quality to RN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا