ﻻ يوجد ملخص باللغة العربية
Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronization of all workers at each iteration, which is hard to scale and could result in the under-utilization of computation resources due to the heterogeneity of the subproblems. To address those limitations of synchronous schemes, this paper proposes an asynchronous distributed optimization method based on the Alternating Direction Method of Multipliers (ADMM) for non-convex optimization. The proposed method only requires local communications and allows each worker to perform local updates with information from a subset of but not all neighbors. We provide sufficient conditions on the problem formulation, the choice of algorithm parameter and network delay, and show that under those mild conditions, the proposed asynchronous ADMM method asymptotically converges to the KKT point of the non-convex problem. We validate the effectiveness of asynchronous ADMM by applying it to the Optimal Power Flow problem in multiple power systems and show that the convergence of the proposed asynchronous scheme could be faster than its synchronous counterpart in large-scale applications.
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potenti
The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagran
This paper first proposes an N-block PCPM algorithm to solve N-block convex optimization problems with both linear and nonlinear constraints, with global convergence established. A linear convergence rate under the strong second-order conditions for
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progres
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the