ﻻ يوجد ملخص باللغة العربية
Spontaneous collapse models and Bohmian mechanics are two different solutions to the measurement problem plaguing orthodox quantum mechanics. They have a priori nothing in common. At a formal level, collapse models add a non-linear noise term to the Schrodinger equation, and extract definite measurement outcomes either from the wave function (e.g. mass density ontology) or the noise itself (flash ontology). Bohmian mechanics keeps the Schrodinger equation intact but uses the wave function to guide particles (or fields), which comprise the primitive ontology. Collapse models modify the predictions of orthodox quantum mechanics, whilst Bohmian mechanics can be argued to reproduce them. However, it turns out that collapse models and their primitive ontology can be exactly recast as Bohmian theories. More precisely, considering (i) a system described by a non-Markovian collapse model, and (ii) an extended system where a carefully tailored bath is added and described by Bohmian mechanics, the stochastic wave-function of the collapse model is exactly the wave-function of the original system conditioned on the Bohmian particle positions of the bath. Further, the noise driving the collapse model is a linear functional of the Bohmian positions. The randomness that seems progressively revealed in the collapse models lies entirely in the initial conditions in the Bohmian-like theory. Our construction of the appropriate bath is not trivial and exploits an old result from the theory of open quantum systems. This reformulation of collapse models as Bohmian theories brings to the fore the question of whether there exists `unromantic realist interpretations of quantum theory that cannot ultimately be rewritten this way, with some guiding law. It also points to important foundational differences between `true (Markovian) collapse models and non-Markovian models.
Quantum mechanics is an extremely successful theory that agrees with every experiment. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never foun
In this letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations (DDEs), which shows
The assumption that wave function collapse is induced by the interactions that generate decoherence leads to a stochastic collapse equation that does not require the introduction of any new physical constants and that is consistent with conservation
A single-particle multi-branched wave-function is studied. Usual which-path tests show that if the detector placed on one branch clicks, the detectors on the other branches remain silent. By the collapse postulate, after this click, the state of the
The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry of wave mechanics to interpret the $psi$ and $psi$* wave functions present in all wave mechanics calculations as representing retarded and advanced waves movin