ﻻ يوجد ملخص باللغة العربية
A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications.
Stimulated by the recent experiment [F. Ando et al., Nature 584, 373 (2020)], we propose an intrinsic mechanism to cause the superconducting diode effect (SDE). SDE refers to the nonreciprocity of the critical current for the metal-superconductor tra
How small superconductors can be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson conjectured in 1959 that superconductivity could only exist when the electronic level spacing $delta$ is smaller than the superconducting gap
When a ferromagnet is placed in contact with a superconductor, owing to incompatible spin order, the Cooper pairs from the superconductor cannot survive more than one or two nanometers inside the ferromagnet. This is confirmed in the measurements of
Exerting control of the magnetic exchange interaction in heterostructures is of both basic interest and has potential for use in spin-based applications relying on quantum effects. We here show that the sign of the exchange interaction in a spin-valv
In the last 60 years conventional solid and electrolyte gating allowed sizable modulations of the surface carrier concentration in metallic superconductors resulting in tuning their conductivity and changing their critical temperature. Recent convent