ﻻ يوجد ملخص باللغة العربية
In high speed CNC (Compute Numerical Control) machining, the feed rate scheduling has played an important role to ensure machining quality and machining efficiency. In this paper, a novel feed rate scheduling method is proposed for generating smooth feed rate profile conveniently with the consideration of both geometric error and kinematic error. First, a relationship between feed rate value and chord error is applied to determine the feed rate curve. Then, breaking points, which can split whole curve into several blocks, can be found out using proposed two step screening method. For every block, a feed rate profile based on the Sigmoid function is generated. With the consideration of kinematic limitation and machining efficiency, a time-optimal feed rate adjustment algorithm is proposed to further adjust feed rate value at breaking points. After planning feed rate profile for each block, all blocks feed rate profile will be connected smoothly. The resulting feed rate profile is more concise compared with the polynomial profile and more efficient compared with the trigonometric profile. Finally, simulations with two free-form NURBS curves are conducted and comparison with the sine-curve method are carried out to verify the feasibility and applicability of the proposed method.
Feedrate scheduling is a key step in computer numerical control (CNC) machining, as it has a close relationship with machining time and surface quality, and has now become a hot issue in industry and academia. To reduce high chord errors and round-of
In this paper, we shed new light on a classical scheduling problem: given a slot-timed, constant-capacity server, what short-run scheduling decisions must be made to provide long-run service guarantees to competing flows of unit-sized tasks? We model
This paper presents a novel solution technique for scheduling multi-energy system (MES) in a commercial urban building to perform price-based demand response and reduce energy costs. The MES scheduling problem is formulated as a mixed integer nonline
In this research, a new data mining-based design approach has been developed for designing complex mechanical systems such as a crashworthy passenger car with uncertainty modeling. The method allows exploring the big crash simulation dataset to desig
A novel method for computing reachable sets is proposed in this paper. In the proposed method, a Hamilton-Jacobi-Bellman equation with running cost functionis numerically solved and the reachable sets of different time horizons are characterized by a