ﻻ يوجد ملخص باللغة العربية
When an agent encounters a continual stream of new tasks in the lifelong learning setting, it leverages the knowledge it gained from the earlier tasks to help learn the new tasks better. In such a scenario, identifying an efficient knowledge representation becomes a challenging problem. Most research works propose to either store a subset of examples from the past tasks in a replay buffer, dedicate a separate set of parameters to each task or penalize excessive updates over parameters by introducing a regularization term. While existing methods employ the general task-agnostic stochastic gradient descent update rule, we propose a task-aware optimizer that adapts the learning rate based on the relatedness among tasks. We utilize the directions taken by the parameters during the updates by accumulating the gradients specific to each task. These task-based accumulated gradients act as a knowledge base that is maintained and updated throughout the stream. We empirically show that our proposed adaptive learning rate not only accounts for catastrophic forgetting but also allows positive backward transfer. We also show that our method performs better than several state-of-the-art methods in lifelong learning on complex datasets with a large number of tasks.
Current deep neural networks can achieve remarkable performance on a single task. However, when the deep neural network is continually trained on a sequence of tasks, it seems to gradually forget the previous learned knowledge. This phenomenon is ref
Graph neural networks (GNNs) are powerful models for many graph-structured tasks. Existing models often assume that a complete structure of a graph is available during training, however, in practice, graph-structured data is usually formed in a strea
Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learnin
Lifelong learning, the problem of continual learning where tasks arrive in sequence, has been lately attracting more attention in the computer vision community. The aim of lifelong learning is to develop a system that can learn new tasks while mainta
The problem of a deep learning model losing performance on a previously learned task when fine-tuned to a new one is a phenomenon known as Catastrophic forgetting. There are two major ways to mitigate this problem: either preserving activations of th