ﻻ يوجد ملخص باللغة العربية
Lifelong learning, the problem of continual learning where tasks arrive in sequence, has been lately attracting more attention in the computer vision community. The aim of lifelong learning is to develop a system that can learn new tasks while maintaining the performance on the previously learned tasks. However, there are two obstacles for lifelong learning of deep neural networks: catastrophic forgetting and capacity limitation. To solve the above issues, inspired by the recent breakthroughs in automatically learning good neural network architectures, we develop a Multi-task based lifelong learning via nonexpansive AutoML framework termed Regularize, Expand and Compress (REC). REC is composed of three stages: 1) continually learns the sequential tasks without the learned tasks data via a newly proposed multi-task weight consolidation (MWC) algorithm; 2) expands the network to help the lifelong learning with potentially improved model capability and performance by network-transformation based AutoML; 3) compresses the expanded model after learning every new task to maintain model efficiency and performance. The proposed MWC and REC algorithms achieve superior performance over other lifelong learning algorithms on four different datasets.
Anomaly detection in video is a challenging computer vision problem. Due to the lack of anomalous events at training time, anomaly detection requires the design of learning methods without full supervision. In this paper, we approach anomalous event
This paper proposes a method to gain extra supervision via multi-task learning for multi-modal video question answering. Multi-modal video question answering is an important task that aims at the joint understanding of vision and language. However, e
When an agent encounters a continual stream of new tasks in the lifelong learning setting, it leverages the knowledge it gained from the earlier tasks to help learn the new tasks better. In such a scenario, identifying an efficient knowledge represen
The problem of a deep learning model losing performance on a previously learned task when fine-tuned to a new one is a phenomenon known as Catastrophic forgetting. There are two major ways to mitigate this problem: either preserving activations of th
Analyzing and understanding hand information from multimedia materials like images or videos is important for many real world applications and remains active in research community. There are various works focusing on recovering hand information from