ترغب بنشر مسار تعليمي؟ اضغط هنا

Curved space equilibration vs. flat space thermalization (a short review)

92   0   0.0 ( 0 )
 نشر من قبل Emil Akhmedov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.T.Akhmedov




اسأل ChatGPT حول البحث

We discuss equilibration process in expanding universes as compared to the thermalization process in Minkowski space--time. The final goal is to answer the following question: Is the equilibrium reached before the rapid expansion stops and quantum effects have a negligible effect on the background geometry or stress--energy fluxes in a highly curved early Universe have strong effects on the expansion rate and the equilibrium is reached only after the drastic decrease of the space--time curvature? We argue that consideration of more generic non--invariant states in theories with invariant actions is a necessary ingredient to understand quantum field dynamics in strongly curved backgrounds. We are talking about such states in which correlation functions are not functions of such isometry invariants as geodesic distances, while having correct UV behaviour. The reason to consider such states is the presence of IR secular memory effects for generic time dependent backgrounds, which are totally absent in equilibrium. These effects strongly affect the destiny of observables in highly curved space--times.



قيم البحث

اقرأ أيضاً

80 - T. Garidi , E. Huguet , J. Renaud 2004
We reexamine in detail a canonical quantization method a la Gupta-Bleuler in which the Fock space is built over a so-called Krein space. This method has already been successfully applied to the massless minimally coupled scalar field in de Sitter spa cetime for which it preserves covariance. Here, it is formulated in a more general context. An interesting feature of the theory is that, although the field is obtained by canonical quantization, it is independent of Bogoliubov transformations. Moreover no infinite term appears in the computation of $T^{mu u}$ mean values and the vacuum energy of the free field vanishes: $<0|T^{00}|0>=0$. We also investigate the behaviour of the Krein quantization in Minkowski space for a theory with interaction. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the laboratory and to calculate the leading correction due to the curvature of the space-time geometry to the Schrodinger equation. The correction is employed to calculate the probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzchild black hole. Since the excited states decay due to spontaneous photon emission, this study provides the theoretical base for detection of small isolated black holes by observing the decay of the excited states as neutral hydrogen atoms in the vacuum are devoured by the black hole.
182 - B. Hamil , M. Merad , T. Birkandan 2020
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In this paper, we study the three dimensional DKP oscillator for spin zero and one in the framework of Snyder-de Sitter algebra in momentum space. By using the technique of vector spherical harmonics the energy spectrum and the corresponding eigenfunctions are obtained for both cases.
121 - Rabin Banerjee , Sk. Moinuddin , 2020
A new approach to the study of nonrelativistic bosonic string in flat space time is introduced, basing on a holistic hamiltonian analysis of the minimal action for the string. This leads to a structurally new form of the action which is, however, equ ivalent to the known results since, under appropriate limits, it interpolates between the minimal action (Nambu Goto type) where the string metric is taken to be that induced by the embedding and the Polyakov type of action where the world sheet metric components are independent fields. The equivalence among different actions is established by a detailed study of symmetries using constraint analysis. Various vexing issues in the existing literature are clarified. The interpolating action mooted here is shown to reveal the geometry of the string and may be useful in analyzing nonrelativistic string coupled with curved background.
Flat Space Cosmology (FSC) spacetimes are exact solutions of 3D gravity theories. In this work, we study phase transition between FSC spacetimes and Hot Flat Spacetimes (HFS) in general minimal massive gravity and exotic general massive gravity. We s how that similar to topological massive gravity the tunneling occurs between two spacetimes by comparing their free energies. We also obtain the corrections to the Bekenstein-Hawking entropy, and its effect on the phase transition is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا