ﻻ يوجد ملخص باللغة العربية
As a generalization of the traditional connectivity, the g-component edge connectivity c{lambda}g(G) of a non-complete graph G is the minimum number of edges to be deleted from the graph G such that the resulting graph has at least g components. Hypercube-like networks (HL-networks for short) are obtained by manipulating some pairs of edges in hypercubes, which contain several famous interconnection networks such as twisted cubes, Mobius cubes, crossed cubes, locally twisted cubes. In this paper, we determine the (g + 1)-component edge connectivity of the n-dimensional HL-networks.
The $g$-component edge connectivity $clambda_g(G)$ of a non-complete graph $G$ is the minimum number of edges whose deletion results in a graph with at least $g$ components. In this paper, we determine the component edge connectivity of the folded hy
The generalized $k$-connectivity of a graph $G$, denoted by $kappa_k(G)$, is a generalization of the traditional connectivity. It is well known that the generalized $k$-connectivity is an important indicator for measuring the fault tolerance and reli
The component connectivity is the generalization of connectivity which is an parameter for the reliability evaluation of interconnection networks. The $g$-component connectivity $ckappa_{g}(G)$ of a non-complete connected graph $G$ is the minimum num
An edge-ordering of a graph $G=(V,E)$ is a bijection $phi:Eto{1,2,...,|E|}$. Given an edge-ordering, a sequence of edges $P=e_1,e_2,...,e_k$ is an increasing path if it is a path in $G$ which satisfies $phi(e_i)<phi(e_j)$ for all $i<j$. For a graph $
The number of mobile and IoT devices connected to home and enterprise networks is growing fast. These devices offer new services and experiences for the users; however, they also present new classes of security threats pertaining to data and device s