ﻻ يوجد ملخص باللغة العربية
The $g$-component edge connectivity $clambda_g(G)$ of a non-complete graph $G$ is the minimum number of edges whose deletion results in a graph with at least $g$ components. In this paper, we determine the component edge connectivity of the folded hypercube $clambda_{g+1}(FQ_{n})=(n+1)g-(sumlimits_{i=0}^{s}t_i2^{t_i-1}+sumlimits_{i=0}^{s} icdot 2^{t_i})$ for $gleq 2^{[frac{n+1}2]}$ and $ngeq 5$, where $g$ be a positive integer and $g=sumlimits_{i=0}^{s}2^{t_i}$ be the decomposition of $g$ such that $t_0=[log_{2}{g}],$ and $t_i=[log_2({g-sumlimits_{r=0}^{i-1}2^{t_r}})]$ for $igeq 1$.
As a generalization of the traditional connectivity, the g-component edge connectivity c{lambda}g(G) of a non-complete graph G is the minimum number of edges to be deleted from the graph G such that the resulting graph has at least g components. Hype
The generalized $k$-connectivity of a graph $G$, denoted by $kappa_k(G)$, is a generalization of the traditional connectivity. It is well known that the generalized $k$-connectivity is an important indicator for measuring the fault tolerance and reli
The component connectivity is the generalization of connectivity which is an parameter for the reliability evaluation of interconnection networks. The $g$-component connectivity $ckappa_{g}(G)$ of a non-complete connected graph $G$ is the minimum num
As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $kappa(G, T)$ (resp. $T$-substructure connectivity $kappa^{s}(G, T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that
An edge-ordering of a graph $G=(V,E)$ is a bijection $phi:Eto{1,2,...,|E|}$. Given an edge-ordering, a sequence of edges $P=e_1,e_2,...,e_k$ is an increasing path if it is a path in $G$ which satisfies $phi(e_i)<phi(e_j)$ for all $i<j$. For a graph $