ﻻ يوجد ملخص باللغة العربية
Multifidelity methods are widely used for statistical estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information of the QoIs. In this paper, we introduce a semi-parametric approach that aims to effectively describe the distribution of a scalar-valued QoI in the multifidelity setup. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric reconstruction. Assuming the linear model is correct, we prove that such a procedure is consistent, and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. A major advantage of our approach compared to several other multifidelity methods is that it is automatic, and its implementation does not require a hierarchical model setup, cross-model information, or textit{a priori} known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.
Deterministic interpolation and quadrature methods are often unsuitable to address Bayesian inverse problems depending on computationally expensive forward mathematical models. While interpolation may give precise posterior approximations, determinis
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers severa
Multifidelity approximation is an important technique in scientific computation and simulation. In this paper, we introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates of the parameters of interes
Accurate approximation of scalar-valued functions from sample points is a key task in computational science. Recently, machine learning with Deep Neural Networks (DNNs) has emerged as a promising tool for scientific computing, with impressive results
Optimization-based samplers such as randomize-then-optimize (RTO) [2] provide an efficient and parallellizable approach to solving large-scale Bayesian inverse problems. These methods solve randomly perturbed optimization problems to draw samples fro