ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilevel adaptive sparse Leja approximations for Bayesian inverse problems

163   0   0.0 ( 0 )
 نشر من قبل Ionut-Gabriel Farcas
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Deterministic interpolation and quadrature methods are often unsuitable to address Bayesian inverse problems depending on computationally expensive forward mathematical models. While interpolation may give precise posterior approximations, deterministic quadrature is usually unable to efficiently investigate an informative and thus concentrated likelihood. This leads to a large number of required expensive evaluations of the mathematical model. To overcome these challenges, we formulate and test a multilevel adaptive sparse Leja algorithm. At each level, adaptive sparse grid interpolation and quadrature are used to approximate the posterior and perform all quadrature operations, respectively. Specifically, our algorithm uses coarse discretizations of the underlying mathematical model to investigate the parameter space and to identify areas of high posterior probability. Adaptive sparse grid algorithms are then used to place points in these areas, and ignore other areas of small posterior probability. The points are weighted Leja points. As the model discretization is coarse, the construction of the sparse grid is computationally efficient. On this sparse grid, the posterior measure can be approximated accurately with few expensive, fine model discretizations. The efficiency of the algorithm can be enhanced further by exploiting more than two discretization levels. We apply the proposed multilevel adaptive sparse Leja algorithm in numerical experiments involving elliptic inverse problems in 2D and 3D space, in which we compare it with Markov chain Monte Carlo sampling and a standard multilevel approximation.



قيم البحث

اقرأ أيضاً

We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers severa l advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al., 2014) -- which involves a number of forward and adjoint model simulations -- to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh-Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. To be able to fully exploit the power of multilevel MCMC and to reduce the dependencies of samples on different levels for a parallel implementation, we also suggest a new pooling strategy for allocating computational resources across different levels and constructing Markov chains at higher levels conditioned on those simulated on lower levels. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
This work considers variational Bayesian inference as an inexpensive and scalable alternative to a fully Bayesian approach in the context of sparsity-promoting priors. In particular, the priors considered arise from scale mixtures of Normal distribut ions with a generalized inverse Gaussian mixing distribution. This includes the variational Bayesian LASSO as an inexpensive and scalable alternative to the Bayesian LASSO introduced in [56]. It also includes priors which more strongly promote sparsity. For linear models the method requires only the iterative solution of deterministic least squares problems. Furthermore, for $nrightarrow infty$ data points and p unknown covariates the method can be implemented exactly online with a cost of O(p$^3$) in computation and O(p$^2$) in memory. For large p an approximation is able to achieve promising results for a cost of O(p) in both computation and memory. Strategies for hyper-parameter tuning are also considered. The method is implemented for real and simulated data. It is shown that the performance in terms of variable selection and uncertainty quantification of the variational Bayesian LASSO can be comparable to the Bayesian LASSO for problems which are tractable with that method, and for a fraction of the cost. The present method comfortably handles n = p = 131,073 on a laptop in minutes, and n = 10$^5$, p = 10$^6$ overnight.
161 - Ajay Jasra , Kody J. H. Law , 2021
This position paper summarizes a recently developed research program focused on inference in the context of data centric science and engineering applications, and forecasts its trajectory forward over the next decade. Often one endeavours in this con text to learn complex systems in order to make more informed predictions and high stakes decisions under uncertainty. Some key challenges which must be met in this context are robustness, generalizability, and interpretability. The Bayesian framework addresses these three challenges, while bringing with it a fourth, undesirable feature: it is typically far more expensive than its deterministic counterparts. In the 21st century, and increasingly over the past decade, a growing number of methods have emerged which allow one to leverage cheap low-fidelity models in order to precondition algorithms for performing inference with more expensive models and make Bayesian inference tractable in the context of high-dimensional and expensive models. Notable examples are multilevel Monte Carlo (MLMC), multi-index Monte Carlo (MIMC), and their randomized counterparts (rMLMC), which are able to provably achieve a dimension-independent (including $infty-$dimension) canonical complexity rate with respect to mean squared error (MSE) of $1/$MSE. Some parallelizability is typically lost in an inference context, but recently this has been largely recovered via novel double randomization approaches. Such an approach delivers i.i.d. samples of quantities of interest which are unbiased with respect to the infinite resolution target distribution. Over the coming decade, this family of algorithms has the potential to transform data centric science and engineering, as well as classical machine learning applications such as deep learning, by scaling up and scaling out fully Bayesian inference.
342 - Ch. Schwab , A. M. Stuart 2011
We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial different ial equations, and the inverse problem is to determine the unknown, parametric deterministic coefficients from noisy observations comprising linear functionals of the solution. We prove a generalized polynomial chaos representation of the posterior density with respect to the prior measure, given noisy observational data. We analyze the sparsity of the posterior density in terms of the summability of the input datas coefficient sequence. To this end, we estimate the fluctuations in the prior. We exhibit sufficient conditions on the prior model in order for approximations of the posterior density to converge at a given algebraic rate, in terms of the number $N$ of unknowns appearing in the parameteric representation of the prior measure. Similar sparsity and approximation results are also exhibited for the solution and covariance of the elliptic partial differential equation under the posterior. These results then form the basis for efficient uncertainty quantification, in the presence of data with noise.
105 - Yiming Xu , Akil Narayan 2021
Multifidelity methods are widely used for statistical estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that repres ent only limited information of the QoIs. In this paper, we introduce a semi-parametric approach that aims to effectively describe the distribution of a scalar-valued QoI in the multifidelity setup. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric reconstruction. Assuming the linear model is correct, we prove that such a procedure is consistent, and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. A major advantage of our approach compared to several other multifidelity methods is that it is automatic, and its implementation does not require a hierarchical model setup, cross-model information, or textit{a priori} known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا