ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are considered to be gigantic reservoirs of cosmic rays (CRs). Some of the clusters are found with extended radio emission, which provides evidence for the existence of magnetic fields and CR electrons in the intra-cluster medium (ICM). The mechanism of radio halo (RH) emission is still under debate, and it has been believed that turbulent reacceleration plays an important role. In this paper, we study the reacceleration of CR protons and electrons in detail by numerically solving the Fokker-Planck equation, and show how radio and gamma-ray observations can be used to constrain CR distributions and resulting high-energy emission for the Coma cluster. We take into account the radial diffusion of CRs and follow the time evolution of their one-dimensional distribution, by which we investigate the radial profile of the CR injection that is consistent with the observed RH surface brightness. We find that the required injection profile is non-trivial, depending on whether CR electrons have the primary or secondary origin. Although the secondary CR electron scenario predicts larger gamma-ray and neutrino fluxes, it is in tension with the observed RH spectrum. In either scenario, we find that galaxy clusters can make a sizable contribution to the all-sky neutrino intensity if the CR energy spectrum is nearly flat.
In this paper we study the effect of reacceleration provided by turbulences on electrons produced by dark matter (DM) annihilation in the Coma cluster. We use a simplified phenomenological model to describe the effect of the turbulences, and explore
SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flas
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i
Radio observations at low frequencies with the Low Frequency Array (LOFAR) start discovering gigantic radio bridges connecting pairs of massive galaxy clusters. These observations probe unexplored mechanisms of in situ particle acceleration that oper
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers