ﻻ يوجد ملخص باللغة العربية
In this paper we study the effect of reacceleration provided by turbulences on electrons produced by dark matter (DM) annihilation in the Coma cluster. We use a simplified phenomenological model to describe the effect of the turbulences, and explore a limited subset of three possible DM models for neutralino particles with different mass and annihilation channel. We find that, for values of the annihilation cross section of the order of the upper limits found with Fermi-LAT measurements in astrophysical objects, and for conservative values of the boosting factor due to DM substructures, the reacceleration due to turbulences can enhance the radio emission produced by DM-originated electrons up to the level of the observed flux of the radio halo in Coma, for moderate reacceleration intensity in relatively short times. Therefore we conclude that, even if it is not possible to distinguish between the fits obtained in this paper because of the scattering present in the radio flux data, the electrons produced by DM annihilation can be possible seed electrons for the reacceleration, as well as secondary electrons of hadronic origin. A possible discriminant between these two classes of models is the flux produced in the gamma ray band, that in the case of DM-originated electrons should be more than two orders of magnitude smaller than the present Fermi-LAT upper limits, whereas in the hadronic case the expected gamma ray flux should be close to the value of present upper limits.
Charged particles scattering on moving inhomogenities of the magnetised interstellar medium can gain energy through the process of second-order Fermi acceleration. This energy gain depletes in turn the magnetic wave spectrum around the resonance wave
Galaxy clusters are considered to be gigantic reservoirs of cosmic rays (CRs). Some of the clusters are found with extended radio emission, which provides evidence for the existence of magnetic fields and CR electrons in the intra-cluster medium (ICM
Recent precise observations of the 2.7 K CMB by the Planck mission toward the Coma cluster are not in agreement with X-ray measurements. To reconcile both types of measuring techniques we suggest that unstable dark matter is the cause of this mismatc
We analyze 2.8-yr data of 1-100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emissio
A520 is a hot and luminous galaxy cluster, where gravitational lensing and X-ray measures reveal a different spatial distribution of baryonic and Dark Matter. This cluster hosts a radio halo, whose map shows a separation between the North-East and th