ﻻ يوجد ملخص باللغة العربية
In periodic systems, nodal lines are loops in the three-dimensional momentum space where two bands are degenerate with each other. Nodal lines exhibit rich topological features as they can take various configurations such as rings, links, chains and knots. These line nodes are usually protected by mirror or PT symmetry. Here we propose and demonstrate a novel type of photonic straight nodal lines in a D2d meta-crystal which are protected by roto-inversion time (roto-PT) symmetry. The nodal lines are located at the central axis and hinges of the Brillouin zone. They appear as quadrupole sources of Berry curvature flux and allow for the precise control of the quadrupole strength. Interestingly, there exist topological surface states at all three cutting surfaces, as guaranteed by the pi-quantized Zak phases along all three directions. As frequency changes, the surface state equi-frequency contours evolve from closed to open contours, and become straight lines at a critical transition frequency, at which diffraction-less surface wave propagation are demonstrated, paving way towards development of super-imaging photonic devices.
Topological manipulation of waves is at the heart of the cutting-edge metamaterial researches. Quadrupole topological insulators were recently discovered in two-dimensional (2D) flux-threading lattices which exhibit higher-order topological wave trap
Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized i
Within the semiclassical Boltzmann transport theory, the formula for Seebeck coefficient $S$ is derived for an isotropic two-dimensional electron gas (2DEG) system that exhibits anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) originatin
We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as $1/k^2$, where $k$ is the distance to a hot-line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite
We study the electronic structure of the nodal line semimetal ZrSiTe both experimentally and theoretically. We find two different surface states in ZrSiTe - topological drumhead surface states and trivial floating band surface states. Using the spect