ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic nodal lines with quadrupole Berry curvature distribution

119   0   0.0 ( 0 )
 نشر من قبل Dongyang Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In periodic systems, nodal lines are loops in the three-dimensional momentum space where two bands are degenerate with each other. Nodal lines exhibit rich topological features as they can take various configurations such as rings, links, chains and knots. These line nodes are usually protected by mirror or PT symmetry. Here we propose and demonstrate a novel type of photonic straight nodal lines in a D2d meta-crystal which are protected by roto-inversion time (roto-PT) symmetry. The nodal lines are located at the central axis and hinges of the Brillouin zone. They appear as quadrupole sources of Berry curvature flux and allow for the precise control of the quadrupole strength. Interestingly, there exist topological surface states at all three cutting surfaces, as guaranteed by the pi-quantized Zak phases along all three directions. As frequency changes, the surface state equi-frequency contours evolve from closed to open contours, and become straight lines at a critical transition frequency, at which diffraction-less surface wave propagation are demonstrated, paving way towards development of super-imaging photonic devices.



قيم البحث

اقرأ أيضاً

Topological manipulation of waves is at the heart of the cutting-edge metamaterial researches. Quadrupole topological insulators were recently discovered in two-dimensional (2D) flux-threading lattices which exhibit higher-order topological wave trap ping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, we unveil quadrupole topological PhCs triggered by a twisting degree-of-freedom. Using a topologically trivial PhC as the motherboard, we show that twisting induces quadrupole topological PhCs without flux-threading. The twisting-induced crystalline symmetry enriches the Wannier polarizations and lead to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. Our study paves the way toward topological twist-photonics as well as the quadrupole topology in the quasi-continuum regime for phonons and polaritons.
Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized i n magnetic systems with broken time reversal symmetry. We provide sufficient symmetry conditions for stabilizing magnetic quadratic and cubic nodal lines, based on which concrete lattice models are constructed to demonstrate their existence. Unlike its counterpart in nonmagnetic systems, the magnetic quadratic nodal line can exist as the only band degeneracy at the Fermi level. We show that these nodal lines can be accompanied by torus surface states, which form a surface band that span over the whole surface Brillouin zone. Under symmetry breaking, these magnetic nodal lines can be transformed into a variety of interesting topological states, such as three-dimensional quantum anomalous Hall insulator, multiple linear nodal lines, and magnetic triple-Weyl semimetal. The three-dimensional quantum anomalous Hall insulator features a Hall conductivity $sigma_{xy}$ quantized in unit of $e^2/(hd)$ where $d$ is the lattice constant normal to the $x$-$y$ plane. Our work reveals previously unknown topological states, and offers guidance to search for them in realistic material systems.
Within the semiclassical Boltzmann transport theory, the formula for Seebeck coefficient $S$ is derived for an isotropic two-dimensional electron gas (2DEG) system that exhibits anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) originatin g from Berry curvature on their bands. Deviation of $S$ from the value $S_0$ estimated neglecting Berry curvarture is computed for a special case of 2DEG with Zeeman and Rashba terms. The result shows that, under certain conditions the contribution of Berry curvature to Seebeck effect could be non-negligible. Further study is needed to clarify the effect of additional contributions from mechanisms of AHE and ANE other than pure Berry curvature.
We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as $1/k^2$, where $k$ is the distance to a hot-line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite chirality but which is distinct from the Fermi arc itself. Such surface Berry curvature appears whenever the bulk Weyl dispersion has a velocity tilt toward the surface of interest. This divergence is reflected in a variety of Berry curvature mediated effects that are readily accessible experimentally, and in particular leads to a surface Berry curvature dipole that grows linearly with the thickness of a slab of a Weyl semimetal material in the limit of long lifetime of surface states. This implies the emergence of a gigantic contribution to the non-linear Hall effect in such devices.
We study the electronic structure of the nodal line semimetal ZrSiTe both experimentally and theoretically. We find two different surface states in ZrSiTe - topological drumhead surface states and trivial floating band surface states. Using the spect ra of Wilson loops, we show that a non-trivial Berry phase that exists in a confined region within the Brillouin Zone gives rise to the topological drumhead-type surface states. The $mathbb{Z}_2$ structure of the Berry phase induces a $mathbb{Z}_2$ modular arithmetic of the surface states, allowing surface states deriving from different nodal lines to hybridize and gap out, which can be probed by a set of Wilson loops. Our findings are confirmed by textit{ab-initio} calculations and angle-resolved photoemission experiments, which are in excellent agreement with each other and the topological analysis. This is the first complete characterization of topological surface states in the family of square-net based nodal line semimetals and thus fundamentally increases the understanding of the topological nature of this growing class of topological semimetals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا