ﻻ يوجد ملخص باللغة العربية
Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized in magnetic systems with broken time reversal symmetry. We provide sufficient symmetry conditions for stabilizing magnetic quadratic and cubic nodal lines, based on which concrete lattice models are constructed to demonstrate their existence. Unlike its counterpart in nonmagnetic systems, the magnetic quadratic nodal line can exist as the only band degeneracy at the Fermi level. We show that these nodal lines can be accompanied by torus surface states, which form a surface band that span over the whole surface Brillouin zone. Under symmetry breaking, these magnetic nodal lines can be transformed into a variety of interesting topological states, such as three-dimensional quantum anomalous Hall insulator, multiple linear nodal lines, and magnetic triple-Weyl semimetal. The three-dimensional quantum anomalous Hall insulator features a Hall conductivity $sigma_{xy}$ quantized in unit of $e^2/(hd)$ where $d$ is the lattice constant normal to the $x$-$y$ plane. Our work reveals previously unknown topological states, and offers guidance to search for them in realistic material systems.
A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal poin
Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotation symmetry
Having been a ground for various topological fermionic phases, the family of ZrSiS-type 111 materials has been under experimental and theoretical investigations. Within this family of materials, the subfamily LnSbTe (Ln = lanthanide elements) is gain
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp