ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a geometric shaping (GS) strategy to design 8, 16, 32 and 64-ary modulation formats for the optical fibre channel impaired by both additive white Gaussian (AWGN) and phase noise. The constellations were optimised to maximise generalised mutual information (GMI) using a mismatched channel model. The presented formats demonstrate an enhanced signal-to-noise ratio (SNR) tolerance in high phase noise regimes when compared with their quadrature amplitude modulation (QAM) or AWGN-optimised counterparts. By putting the optimisation results in the context of the 400ZR implementation agreement, we show that GS alone can either relax the laser linewidth (LW) or carrier phase estimation (CPE) requirements of 400 Gbit/s transmission links and beyond. Following the GMI validation, the performance of the presented formats was examined in terms of post forward error correction (FEC) bit-error-rate (BER) for a soft decision (SD) extended Hamming code (128, 120), implemented as per the 400ZR implementation agreement. We demonstrate gains of up to 1.2 dB when compared to the 64-ary AWGN shaped formats.
The problem of recovering a structured signal from its linear measurements in the presence of speckle noise is studied. This problem appears in many imaging systems such as synthetic aperture radar and optical coherence tomography. The current acquis
A new geometric shaping method is proposed, leveraging unsupervised machine learning to optimize the constellation design. The learned constellation mitigates nonlinear effects with gains up to 0.13 bit/4D when trained with a simplified fiber channel model.
Motivated by applications in reliable and secure communication, we address the problem of tiling (or partitioning) a finite constellation in $mathbb{Z}_{2^L}^n$ by subsets, in the case that the constellation does not possess an abelian group structur
Unconventional receivers enable reduction of error rates in optical communication systems below the standard quantum limit (SQL) by implementing discrimination strategies for constellation symbols that go beyond the canonical measurement of informati
We study the simplest optomechanical system in the presence of laser phase noise using the covariance matrix formalism. We show that the destructive effect of the phase noise is especially strong in the bistable regime. This explains why ground state